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Abstract

This paper addresses the problem of recognizing
hand-segmented vowel phonemes in isolated words pro-
nounced by different speakers. Overcoming variation in
the spectral properties of similar vowels produced by
different speakers (vowel normalization) is a subprob-
lem in the goal of large vocabulary, speaker-independent
speech recoguition. Two normalization techniques are
compared in a series of recognition experiments on the
15 oral and nasal French vowel phonemes.

1.0 Introduction

Eskenazi and Liénard have shown that human lis-
teners can phonemically classify isolated French vow-
els pronounced by ten speakers with 88 percent accu-
racy. However, their automatic classification algorithm,
based on spectral similarity, achieves a recognition rate
of only 50 percent.! The poor performance they ob-
serve in automatic vowel recognition is largely due to
spectral variability in different speakers’ voices. While
the human listeners are able to ignore differences re-
lated to speaker type and focus on phonemic class, the
spectral classification technique is not. The purpose of
a normalization method is to transform spectral repre-
sentations in such a way as to minimize speaker-related
iuformation while preserving phonemic information.

Two normalization techniques are compared in a
series of automatic phoneme recognition experiments
on French vowels.? The first normalization technique
involves rotating the vowel space of each speaker in
the multidimensional spectral space so that directions
of maximum variance for all speakers coincide. This
method, which has never been tested empirically, is
equivalent to a principal components representation of
each speaker’s vowels in which the principal direc-
tion eigenvectors are determined individually for each

! M. Eskenazi and J.S. Liénard (1983), “Recognition of
steady-state French sounds pronounced by several speak-
ers: comparison of human performance and an automatic
recognition algorithm”, Speech Communication 2, pp. 173-177.
The one essential difference between Eskenazi and Liénard’s
database and the one to be described in this paper is that
the former was produced by having trained speakers pro-
nounce vowel phonemes in isolation, while the latter uses
untriined subjects reading word lists.

* This work was funded by DCIEM, Department of National
Defence, Canada. The author thanks Pascal Auxerre of the
Ecole Nationale Supérieure des Télécommunications (Paris)
for his help in executing these experiments.

speaker.® The second technique involves centering the
vowel space by removing the overall speaker mean,

2.0 Experimental Methods

The data consist of a list of ninety French words,
mainly monosyllables, read by ten speakers of Parisian
French, five women and five men. In the cagse of polysyl-
labic words, only the final stressed syllable is used. Vow-
els are segmented by hand, yielding 891 vowel tokens
(ninety per speaker, less misread and missing words).
After preprocessing and optional normalization, each
vowel token is represented by a single, D-dimensional
parameter vector averaged over the duration of the
vowel, excluding consonant transitions. Averaging is
justified because Parisian French vowels tend to be
steady state.

Speaker-independent recognition experiments, in
which the test speaker is excluded from the training
set, measure relative eflectiveness of the normalization
methods. Each speaker-independent recognition exper-
iment consists of ten subexperiments in which each of
the ten speakers serves as test speaker, the nine oth-
ers being used for training (leave-onc-out procedure).
Error rates are pooled across the ten subexperiments.

For all experiments, recognition is accomplished us-
ing fifteen D-dimensional reference vectors, one corre-
sponding to each phoneme averaged over the training
set. Test tokens are recognized by calculating the Eu-
clidean distance to each of the fifteen references and ap-
plying the nearest-neighbor decision rule. Two phone-
mic confusions are not counted as errors: /é/ = /e/
and /a/ = [a/. The first of these pairs is completely
merged in Parisian French; the second is merged for
many but not all speakers.* Confusion matrices also
show much confusion between the phonemes / >/ and
/ce/. This is because the allophone of />/ that occurs
before consonants other than /R/ is completely over-
lapped with /ee/.® The latter confusion is nonetheless
included in the error scores, leading to a conservative
estimate of recognition performance.

3 M.M. Taylor (1973) argues that the nervous system may
actually perform adaptive principal components analyses
in “The problem of stimulus structure in the behavioural
theory of perception”, South African Journd of Psychology 8,
pPp. 23-45.

See M. Lennig (1978), Acoustic Measurement of Linguistic
Change: the Modern Paris Vowel System, University of Penn-
sylvania Dissertation Series, No. 1, U.S. Regional Survey,
204 North 35th St., Philadelphia, PA 19104.

Idem. Also, A. Martinet (1958), “C’est jeuli le Mareuc”,
Romance Philology 11, pp. 345-355.
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3.0 Speaker-Dependent Recognition

To establish an upper bound on speaker-indepen-
dent recognition accuracy, speaker-dependent recogni-
tion experiments are performed first. Each speaker-
dependent experiment similarly consists of ten subex-
periments, except that the training set contains only
the test speaker’s own tokens, including the test token
itself.

Four different parameter sets are compared: the
first D of the 20 log channel energies, (L1,...,Lp),
outputs from a mel-frequency channel bank; the mel-
based cepstrum, (Co,...,Cp—y1), which is the cosine
transform of the log channel energies;® the mel-based
cepstrum, (Cy,...,Cp), excluding Cp, the overall en-
ergy component; and the global principal components,
(G1,...,Gp), based on the global covariance matrix of
the log channel energies.”

Figure 1 shows percentages correct recognition in
speaker-dependent experiments using the four parame-
ter sets listed above as dimensionality D varies from 2
to 19. Recognition performance using principal compo-
nents, cepstrum including Cy, and log channel energies
converge at higher dimensions since they are simply ro-
tations of each other. When fewer dimensions are used,
principal components perform better than either the
cepstrum including Cy or the log channel energies since
the first few principal components express most of the
variance in the data.

Perhaps the most striking result appearing in Fig. 1
is the advantage to be gained by ezcluding the overall
energy parameter, Cy. This implies that as far as vowel
recognition is concerned, variance due to overall ampli-
tude does not aid in vowel recognition and should be
considered as noise. The mel-based cepstrum lends it-
self to the simple elimination of overall energy by omit-
ting Co. To eliminate overall energy from the principal
components parameterization, however, requires an en-
ergy equalization prior to computation of the covariance
matrix (see Sect. 4.1).

To compare the performance of principal compo-
nent parameters based on individually determined co-
variance matrices as opposed to one global covariance
matrix, a speaker-dependent experiment was conducted
at D = 8. Use of individually determined principal com-
ponent parameters, (Iy,...,Ig), resulted in a speaker-
dependent recognition rate of 82 percent correct. This is
slightly worse than the 85 percent achieved with global
principal components and substantially worse than the
88 percent achieved with the mel-based cepstral coeffi-
cients, (Cy,...,Cs).

S For details, see S.B. Davis and P. Mermelstein (1980),
“Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences”, IEEE
Trans. on Acoust. Speech and Signdl Processing ASSP-28(4),
pPp. 357-366.

The global covariance matrix is computed over all spectral
frames of all tokens from all speakers. The principal compo-
nents transformation represents each token in the coordinate
system defined by the eigenvectors of the global covariance
matrix, in order of decreasing eigenvalue.
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4.0 Speakér-Normalization Experiments

Normalization effectiveness is measured two ways:
recognition accuracy, described above, and a statistical
measure of separation, F, based on Fisher’s F-ratio.
F is the ratio of between-phonemne variance to within
phoneme variance, where variance is interpreted as the
average squared distance to the appropriate mean vee-
tor. Larger values of F' indicate more separation be-
tween phonemes and thus better normalization meth-
ods.

4.1 Principal Components Normalization

In order to apply the principal components normal-
ization, in which each speaker’s vowels are expressed
relative to his own principal axes, the polarity of cor-
responding axes of different speakers must agree. How-
ever, large differences in the directions of corresponding
eigenvectors of the ten speakers make a consistent as-
signment of polarity beyond Is impossible, thereby lim-
iting the use of individual principal components to the
first three components, (I, ..., I3). Components of the
cepstrum, (Cy,...,Cs), are used in place of the higler
order principal components. We verified by inspection
that Cyg is not highly correlated with Is.

In speaker-independent recognition, the unnor-
malized mel-based cepstrum excluding Cy achieves a
recognition rate of G3 percent correct (F = 2.1),
compared with a rate of 58 percent correct (F ==
1.7) for the principal components normalization using
(I1,...,I3,C4,...,Cs). To check whether the obscrved
effect is due to removal of the overall energy component
from the cepstrum, we equalized the overall encrgy in
all log channel energy spectra prior to computation of
the covariance matrix and subsequent processing. This
gave even worse results: 49 percent correct recoguition,

F =1.0.

4.2 Normalization by Vowel Space Centering

Since the principal components approach by itself
appears to lack promise, we turned to another tech-
nique. One way in which vowel spaces tend to differ is
in overall position relative to the origin of the parame-
ter space. Centering normalizations attempt to remove
this aspect of between-speaker variability by translating
each speaker’s vowel system appropriately. Arbitrariiy,
we choose the origin of the parameter space as the com-
mon center and translate all speakers’ vowel systems so
that their means occur at the origin. The potential
benefit of such a centering operation has been shown in
the log spectral domain.® The operation we propose is
closely related to these, but is expressed in the trans-
form domain.

8 L.C.W. Pols (1977), Spectral Analysis and Identification of Duich
Vowels in Monosyllabic Words.  Soesterberg (The Nether-
lands): Institute for Perception TNO, pp. 82-83. Also,
M.J. Hunt (1981), “Speaker adaptation for word-based
speech recognition systems,” Journ. Acoust. Soc. Am. 69(S1),
pp. S41-542.



The centering operation consists of calculating, for
each speaker, the average parameter vector over all to-
kens of all phonemes, weighting each token equally.?
Normalization is then achieved by subtracting each
speaker’s mean parameter vector from each of his to-
ken vectors, thus “centering” his vowel space about the
origin. The first two data columns of Table 1 compare
recognition accuracies of unnormalized versus centered
parameter vectors for three of the parameter sets pre-
viously discussed. Columns four and five show similar
results for F. For all three parameter sets, cepstrum,
global principal components, and individual principal
components, centering causes a dramatic improvement
in both recognition and F-ratio. The best parameter
set still appears to be the cepstrum excluding Cp.

4.2 Normalization by Scaling of Dimensions

Vowel space centering causes dramatic improve-
ments in both recognition performance and F-ratio.
Can additional transformations further improve perfor-
mance? Since centering has eliminated variability in the
pocition of the vowel space center, one might speculate
that eliminating interspeaker variability in the overall
range of the parameters may also help.

For each of the ten speakers, the variance of each
parameter is calculated over all tokens of all phonemes.
Each parameter of each of the nine training speakers
is then scaled so that its variance matches that of the
test speaker’s corresponding parameter. This technique
preserves the natural weighting of the various parame-
ters while equalizing variance in each dimension across
all speakers. After centering and scaling, training data
were averaged to form fifteen phoneme templates. Ta-
ble 1 shows the results of scaling for the three param-

¢ Similar results are obtained by weighting each phoneme
class equally.

eter sets under discussion. Scaling increases the per-

formance of (Cy,...,Cs) from 79 percent to 81 percent
correct.

5.0 Conclusions

The 88 percent speaker-dependent recognition rate
achieved using parameters (Cy,.. ., Cg) equals the rate
with which human listeners perform an equivalent vowel
classification task as reported by Eskenazi and Liénard.

In all the experiments we have performed, normnal-
ization effectiveness of principal components ag mea-
sured by F-ratio and recognition accuracy never excee s
that of the mel-based cepstrum excluding Cy. This
may be because of the rather small amount of vowel
data used to determine each speaker’s covariance ma-
trix (about 13 to 14 seconds per speaker). In order
to be useful as a speaker-adaptive technique, however,
a speaker normalization method should show improve-
ment with small amounts of data. We can conclude that
the straightforward application of principal compouents
as a normalization technique is ineffective.

On the positive side, we conclude that for all pa-
rameter sets investigated, centering is a powerful and
effective method for normalization of vowels. Once cen-
tering has been applied, a small additional benefit may
be derived from scaling. The reason centering is so effec-
tive appears to be its ability to normalize interspeaker
differences in glottal spectrum shape (voice quality).

The best speaker-independent recognition score
achieved for any 8-dimensional parameter set was 81
percent. When D is increased to 10, the same speaker-
independent technique achieves 83 percent correct, as
shown in Table 2, but does not improve significantly
as D is further increased. The 83 percent speaker-
independent result begins to approach the 88 per-

cent human performance reported by Eskenazi and
Liénard.

Percent Correct F-ratio
Centered Centered
Unn alized Unnormalized
Parameter Set i Unscaled | Scaled Unscaled | Scaled
(C1,...,Cs) 68 % 79 % 81 % 2.1 5.0 5.3
(G1,...,Gs) 57 % 75 % 78 % 14 4.6 5.7
(Il,...,Is.C4,...,Cg) 58 % 72 % 74 % 1.7 4.5 4.9

Table 1.

Recognition rates and F-ratios for three parameter sets (mel-based cepstruimn,

global principal components, and individual principal components) under
three different normalization conditions: unnormalized, centered but not

scaled, centered and scaled.
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Fig. 1. Recognition scores in speaker-dependent experiments for four parameter sets:
cepstrum excluding Co, cepstrum with Cp, global principal components, and
log channel energies. Number of parameters, D, varies from 2 to 19.

Bl _[el [el [yl [l [/ [a/ [a] [3] [of [u/ [é/ /& [a/ [5] Percent Correct

/i/ 120 0 0 o0 0 0 0 o0 0 0 0 0 0 0 0 100 %
/e/ | 2 47 5 1 0 0 0 0 0 0 0 o0 0 0 1 84 %
/e/ | 0 8 55 0 6 1 1 1 0 0 0 o0 2 0 o0 74 %
/y/ |1 0 0 17T 0 0 0 0 0 0 0 o0 0 0 0 94 %
fe/| O 0 2 0 25 2 0 0 1 0 0 o0 1 0 o0 81 %
/o/ | O 3 2 0 2 32 0 o0 0 0 0 0 0 0 1 80 %
/af {0 0 1 0 0 0O |78 3|0 0 0 2 2 0 0 96 %
Ja/ | O 0 0 O 0 0 |12 49| 0 ©0 0 2 0 5 0 20 %
/>0 o0 o0 0 18 0 0 3 6 3 0 6 1 10 2 64 %
fJo/ 10O 0 0 0 0 0 0 0 0 91 1 0 0 2 8 89 %
/u/ |2 0 0 0 0 2 0 0 0 7 117 0 0 1 6 87 %
/§/10 0 1 0 2 0 2 0 4 0 0 7 4 1 0 52 %
/& |0 0 0 o0 4 0o 3 1 1 0 0 |11 6 3 0 59 %
/a/ {0 0 0 0 0 0 0 0 0O 0 0 o0 1 27 2 90 %
jo/ i1 0 0 O 0 1 0 0 0o 3 1 0 0 2 3l 79 %

Overall speaker-independent recognition rate: 83 %

Table 2. Confusion matrix for 83 % speaker-independent recognition rate (excluding
confusions between /a/ = /a/ and /&/ = /é/, shown inside boxes) achieved
using mel-based cepstrum parameters (C1,...,C1o) centered by speaker’s
token mean and scaled by speaker’s token variance. N = 891. F-ratio = 4.0,
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