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In this paper, a method is developed to employ vowel duration properties in a hidden Markov
model (HMM)-based large vocabulary speaker trained recognition system. It is found that
each of the vowel phonemes spoken in isolated words can be divided into three allophones,
each corresponding to a largely distinctive range of vowel durations. Such a division is based
upon the phonetic context where the vowel occurs. In order to incorporate the durational
information, each vowel’s HMM is trained using a maximum-likelihood method with three
separate sets of transition probabilities, corresponding to the three allophones. The output
distributions of the HMM are assumed to be the same for all three allophones and trained
jointly, to make best use of the limited number of available training tokens. The duration-
specific HMMs for vowel allophones have been evaluated in isolated word recognition
experiments for two male speakers. The results show that the performance of the recognizer is
improved, reducing the error rate by approximately 14% compared with recognition results
without the use of the vowel durational models. The performance improvement resulting from
use of the vowel durational models is due to reduction of postvocalic consonant errors arising

from their contextual correlation with vowels of different durations, as well as to improved

discrimination between vowel phonemes.

PACS numbers: 43.72.Ne, 43.70.Fq

INTRODUCTION

It is well known that vowel duration is context depen-
dent (Lehiste, 1970; Klatt, 1976). However, in attempts to
recognize speech using hidden Markov models (HMM:s),
this fact has not been exploited. The objective of this paper is
to demonstrate the usefulness of context-dependent dura-
tional allophones of vowels in a large vocabulary speech rec-
ognition system. Use of the fine-grained acoustic-phonetic
information is particularly important as the size of the voca-
bulary, and thus potential confusability among words,
grows.

The recognition system in which we evaluate the effec-
tiveness of durational allophones for the vowels has a voca-
bulary of 60 000 English words. The system is trained for
each new speaker by asking the speaker to read out loud a
text consisting of about 1000 isolated word tokens. About
1000 word tokens are sufficient to train the 60 000-word re-
cognizer because each vocabulary item is modeled as a se-
quence of phonemes. Prior to the use of durational allophone
models for vowels reported in this paper, the top choice word
accuracy for our best speaker using a uniform language mod-
el (i.e., all words are considered a priori equally probable)
was 84% for natural text and 64% for a separate list of words
purposely chosen to be confusable. This result was obtained
by using one HMM to represent each phoneme, except for
/1/ and /r/, which were represented by two HMMs each,
and using mel-frequency cepstral coefficients (Davis and
Mermelstein, 1981) and their differences over time as fea-
ture parameters.

In order to improve the performance of the phoneme-
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based HMM recognizer at the acoustic level, we explore the
use of the durational properties of context-dependent vowel
allophones in their HMM representations. The standard
HMM of a phoneme consists of a set of output distributions
that tend to model spectral characteristics and of a set of
transition probabilities that model temporal characteristics
of the phoneme (Jelinek, 1976; Bahl ez al., 1983). To model
durational allophones of a given vowel phoneme, our ap-
proach is to provide a distinct set of transition probabilities
for each duration-sensitive allophone but to retain the same
output distributions. This yields allophone models of a vow-
el that have similar spectral characteristics, and thus retain
robustness of parameter estimations for output distribu-
tions, but that differ in expected duration.

This context-dependent durational modeling approach
differs fundamentally from other attempts to incorporate
duration information into HMMSs. All work on duration in
the HMM framework has focused on the following defi-
ciency: The expected length of time spent in a particular
state in a standard HMM decreases exponentially. When
states correspond to phonetic units, which is often the case
when a whole word is represented by a single HMM, this
aspect of the HMM is unrealistic. In fact, the duration of
phonetic units tends to be distributed in a gamma-like fash-
ion (Crystal and House, 1982). This has led Russell and
Moore (1985), Levinson (1986), Russell and Cook (1987),
and Codogno and Fissore (1987) to propose and experiment
with the variable-duration HMM (also called the semi-
HMM), which allows probability distributions of state oc-
cupancy durations to be modeled explicitly.

However, when an HMM is used to represent a vowel,
as is the main concern of this paper, the states do not usually
represent individual phonetic events. The overall vowel du-
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ration as modeled by the HMM can be shown to possess a
gamma-like, rather than an exponential, distribution due to
the concatenation of states. Thus the form of the overall du-
ration distribution in the standard HMM for a vowel does
not present a serious problem, as it does in the HMM for a
word. Therefore, the variable-duration HMM does not offer
any particular advantage over the standard HMM in terms
of modeling the distribution of the vowel duration as a whole.

The variable-duration HMMs proposed so far (Russell
and Moore, 1985; Levinson, 1986) have not taken account
of known systematic regularities in speech segment duration
variations. Except for specifically chosen test data sets, semi-
Markov modeling has not been shown to outperform the
standard HMM in general cases. In contrast, the approach
proposed here directly utilizes knowledge about how vowel
duration variation is conditioned by phonetic contexts, thus
modeling the vowel duration information more closely than
all previous context-independent HMMs, either standard
HMMs or semi-HMMs. It is due to this more precise dura-
tion modeling that the models proposed here outperform
standard HMMs consistently for the data we have tested, as
will be shown in this paper.

This paper is organized as follows. In Sec. I, to provide a
background for incorporating vowel duration into the
HMMSs, we describe the context-dependent characteristics
of vowel duration in isolated words as observed in the train-
ing data set. Section II shows how these durational charac-
teristics can be incorporated into HMMs and describes the
training algorithm for HMMs having multiple sets of transi-
tion probabilities. Section III presents the results of isolated
word recognition experiments using vowel durational mod-
els and demonstrates improvements in recognition accura-
cy. Finally, in Sec. IV, we summarize and discuss our find-
ings and results.

. CONTEXT-DEPENDENT CHARACTERISTICS OF
VOWEL DURATION

It is well known that the number of syllables in a word is
the major factor influencing vowel duration (Crystal and

House, 1982; Ladefoged, 1982). For isolated words, vowel
duration decreases as the number of syllables in the word
increases (Barnwell, 1971). For words equally long in num-
ber of syllables, vowel duration is influenced by phonemes
that follow the vowel. The vowel is lengthened in syllables
closed by voiced consonants relative to syllables closed by
voiceless consonants (House and Fairbanks, 1953; Raphael
et al., 1975; Ladefoged, 1982). In turn, the duration of the
vowel is a major cue for distinguishing between voiced and
voiceless stop consonants in the vowel-consonant context
(Zue, 1985).

We examined the dependence of vowel duration on the
above contextual factors in our training data set comprising
1102 isolated words spoken by a native American English
speaker. About 80% of words in the training set are derived
from sentences read from texts selected randomly from mag-
azines, books, newspapers, and office correspondence. The
remaining words were chosen to contain phonemes in a var-
iety of consonant clusters and CVC contexts. Each word in
the training set is automatically segmented into a sequence
of phoneme-sized units. The units are expressed in the sur-
face form, derived from the baseform after applying a set of
speaker-dependent phonological rules. The rules for vowels,
determined by a phonetician, concern mainly the vowel re-
duction, the merge of /a/ and />/, and the determination of
lax or tense /2/. The segmentation method uses the Viterbi
algorithm (Jelinek, 1976), which aligns a word to a se-
quence of phone-sized HMMs obtained from a small amount
of hand-segmented training data. The Viterbi-segmented
phone boundaries of each word were carefully checked using
spectrograms and were manually adjusted when necessary.

To minimize complexity and to make best use of the
limited number of word tokens available, we attempted to
capture only the most distinct durational differences. First,
we grouped all the words with the number of syllables
greater than one as polysyllabic words. Second, vowels (ex-
cept schwa) in monosyllabic words, which are closed by a
voiced consonant, and those in open syllables were grouped
as a single category, since the durations for both are signifi-

TABLE I. Durational statistics of vowels in training data (1102 words). The significant level of the differences in the duration means for the three allophones

is tested by the ¢ statistic.

Voiced coda or open syllable

Voiceless coda

in monosyllabic words in monosyllabic words In polysyllabic words
Vowel mean (ms) s.d.(ms) No. of tokens mean (ms) s.d. (ms) No. of tokens mean (ms) s.d. (ms) No. of tokens
aj 328 60 57 216 © a8 32 202 47 54
e 306 58 21 213 18 13 176 34 23
aw 294 61 7 260 1 2 252 35 35
2j 390 29 6 255 25 2 276 69 8
i 256 60 23 164 25 7 137 61 142
I 218 59 46 156 29 19 104 41 172
€ 214 36 21 185 24 15 133 38 63
® 303 51 39 234 22 19 159 36 61
a 311 47 8 234 29 13 178 33 87
A 266 53 81 174 25 19 129 38 28
u 294 81 42 186 28 8 168 46 20
U 193 26 6 157 21 10 121 37 10
o 308 68 29 203 24 14 193 57 33
) 262 54 20 203 9 3 167 44 46
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cantly greater than the durations of vowels closed by a voice-
less consonant. In short, the three phonological environ-
ments that determine the three allophones of each vowel are
as follows: (1) in monosyllabic words with a voiced coda or
in open syllables, (2) in monosyllabic words with a voiceless
coda, and (3) in polysyllabic words. For each allophone, the
mean duration, standard deviation, and the number of train-
ing tokens available are shown in Table I. It is apparent from
Table I that, for nearly all the vowels, the three allophones
possess systematically different durations. Statistical ¢ tests
(Freund and Walpole, 1980) show that most of these differ-
ences in duration are highly significant (generally, p < 0.01).

The vowel schwa /3/ is an exception to the above dura-
tional pattern. Most isolated words tend to be stressed, pre-
venting the production of schwas in monosyllabic words.
For example, the word /e has a phonetic transcription /da/
instead of /35/, where /a/ represents the stressed midcen-
tral vowel /o/. For schwas in polysyllabic words, however,
significant durational variations are still evident. For 103
schwa tokens in bisyllabic words closed by a voiced coda or
in open syllables, the duration is 107 4+ 30 ms (mean and
standard deviation), while for 20 schwa tokens in bisyllabic
words closed by a voiceless coda, the duration is 92 + 20 ms,
which is significantly shorter (¢ = 2.142, p < 0.025). The du-
ration of 159 schwa tokens in words with more than two
syllables is 67 + 23 ms, which is shorter still (#=4.925,
p <0.005).

Figures 1 and 2 show two examples of spectrograms of
words with different durations of the same vowel occurring
in three different phonetic contexts. Figure 1 shows spectro-
grams of words code, coat, and coating, on the same time
scale. The duration of vowel /0/ in word code (monosyllabic
word with a voiced coda) can be seen to be longer than that
in word coat (monosyllabic word with a voiceless coda),
which in turn is longer than that in word coating (polysyl-
labic word). Similar observations for vowel /1/ as in words
pig, pick, and piggin are illustrated in Fig. 2.

1. INCORPORATION OF VOWEL DURATION INTO THE
RECOGNIZER

A. Employing durational features in Markov models

The vowel duration statistics described in the last sec-
tion suggest that each vowel (except schwa) can be divided
into three allophones according to the phonetic context
where the vowel occurs, each allophone reflecting a distinct
distribution of vowel durations. The phonetic contexts that
define the three allophones are, in order of increasing vowel
duration, (1) vowels in polysyllabic words, (2) vowels in
monosyllabic words with a voiceless coda, and (3) vowels in
monosyllabic words with a voiced coda or in open syllables.
Although the duration of a vowel can still differ appreciably

(a)

code

Hz

(b)

coat

20004

(c)

coating

700 ms

FIG. 1. Wideband spectrograms of words (a) code, (b) coat, and (c) coating, respectively, all with the time scale from 0 to 700 ms and with the frequency
scale from 0 to 8000 Hz. The vertical bars under the abscissas delimit the vowels under consideration. Note that the vowel/o/ allophone in the monosyllabic
word with an (a) voiced coda is the longest, the allophone in the monosyllabic word with a (b) voiceless coda is somewhat shorter, and the allophone in the

polysyllabic word (c) is the shortest.
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(a)
pig

(b)

pick

(c)
piggin

700 ms

FIG. 2. Wideband spectrograms of words (a) pig, (b) pick, and (c) piggin, respectively, with the same time and frequency scales as those in Fig. 1. Three
allophones of vowel /1/ have their durations in a decreasing order from (a)-(c). The phonological environments corresponding to this durational variation

are the same as those in Fig. 1.

among polysyllabic words depending on stress and other
contextual factors, the present analysis does not capture
such distinctions, and the corresponding vowels are all
grouped into one category. Further subdivision of the vowels
in polysyllabic words is unnecessary since these words tend
to be recognized with much higher accuracy than monosyl-
labic words due to their more extensive lexical constraints
and thus greater discriminability.

Schwa does not occur in monosyllabic words spoken in
isolation. Schwa in bisyllabic words tends to be much longer
than schwa in words longer than two syllables. Therefore,
schwa is divided into three allophones as follows: (1) bisyl-
labic words with a voiced coda or in an open syllable, (2)
bisyllabic words with a voiceless coda, and (3) words with
more than two syllables.

The allophonic analysis of vowels described above sug-
gests that three separate HMMs be trained for each vowel
phoneme in order to achieve more accurate modeling of
vowel duration. A serious problem arises in doing so: The
amount of training data available per model for estimating
HMM parameters is, on average, one third of that used for
the training of the standard phoneme models. This leads to
nonrobust estimates of the output distribution parameters of
the HMMs. As will be described in Sec. III, our experiments
show that less robust models lead to a serious degradation of
the recognizer’s performance.

We are faced with a trade-off between model accuracy
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and model robustness. The solution we propose is based on
the observation that the overall spectral shape of the vowel
does not differ appreciably among the three allophones, as
can be seen in the examples shown in Figs. 1 and 2. The
HMM training process exploits this as follows. For each iter-
ation of the model reestimation, all tokens from the three
allophones are combined to reestimate the parameters of the
context-independent output distribution (multivariate
Gaussian) in the HMMs. The tokens of each allophone are
used to reestimate a context-dependent set of state transition
probabilities. Since there are far fewer transition probability
parameters (about 5%) than output distribution param-
eters (about 95%) to be reestimated, this approach solves
the robustness problem. Nevertheless, the essential dura-
tional features of the contextual allophones are captured by
the model’s transition probabilities. In fact, during model
training, a significant increase in likelihood scores was con-
sistently observed for the duration-specific allophone
HMMs, compared with the likelihood scores for the stan-
dard phoneme HMM.

B. Procedure for training HMMs having multiple sets of
transition probabilities

This section describes the new training procedure for
the HMM s that incorporates the durational features by rees-
timating multiple (three in the present work) sets of state
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transition probabilities. The derivation of the reestimation
formulas rigorously follows the general Baum—Welch reesti-
mation algorithm (Baum, 1972; Levinson et al., 1983; Li-
porace, 1982), as summarized below. Since a large portion of
our derivation is similar to that of Liporace (1982) (for the
reestimation of context-independent Gaussian HMMs),
only the final reestimation formulas for the context-depen-
dent vowel HMMs are presented here.

The Baum—Welch algorithm starts with an initial guess
of the parameters of the model (left-to-right model in the
present application) for multiple training tokens represent-
ing each of the allophones. The tokens are denoted as O,
[ = 1,2, and 3 (the allophone index) and k = 1,2, ...,K, (the
token index), where K| is the total number of tokens of the
Ith allophone. Each token & in the allophone /, of length
T{®, is a sequence of observation vectors; i.e.,
0P = (0fR,0(%,..

The reestimation algorithm is a transformation that
maps the parameter space into itself based on the model.
Each transformation updates the model consisting of the pa-
rameter set (4,B), where 4 = [a,;], i,j=1,2,...,N is the
transition probability from state / to state j, and B
= [b;;], i, j = 1,2,...,N is the output distribution associated
with the state transition from i to j. The key property of the
transformation is that the updated model always has a high-
er score on the overall training token set than the previous
iteration of the model, unless a critical point has been
reached. The transformation procedure is iterated until such
a critical point is reached.

The transformation of the context-dependent transition
probability of the vowel HMM is as follows:

k
’o;T;k) ).

k (k)
K, T® K, T

af) = Z 21/‘(11) 2 ZV"(I), (1)

=1t=1

where / = 1,2,3 is the index of the three separate sets of tran-
sition probabilities, and

v ) = P(OJ°,si_ | = i,s¢ =j|M,)/P(O[°|M,),

(2)
is the conditional probability that for token k, state j is occu-
pied at time ¢ and state / is occupied at time ¢ — 1, given that
the observation sequence is generated by the model. The
model used to compute this conditional probability is the
one relevant to the vowel duration context, denoted by M,.
Similarly,

yel(i) = P(O§P,sk_, =i|M,)/P(O{*|M,) (3)

is the conditional probability that for token k, state i is occu-
pied at time ¢ — 1, given that the observation sequence is
generated.

Note that, in Eq. (1), the / th set of transition probabili-
ties is estimated only from the tokens belonging to the /th
allophone of tokens.

The output distribution used in the present study is con-
tinuous multivariate Gaussian:

b,,(0) =N[0,0,,%],

whose parameters are the mean vectors @, ;, associated with

ijy
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each state transition, and the covariance matrix = pooled
over all the state transitions of the phoneme for the robust-
ness of its estimation.
The transformation of the mean vector corresponding
to the transition from state i to state j is
011_21—1 fl—n r-17’k (4,))0, , (4)
?—1 ko i z—1?’k ()]

and the reestimate of the covariance matrix is
5,3, 3T, G,) (0, — ©,) (0, — ©)*
100 000 XA WP )

>

&)

Note that in the transformations (4) and (5) for both
the mean vector and the covariance matrix, tokens of all
allophones are pooled, thus effectively increasing the num-
ber of tokens available for parameter estimation.

The conditional probabilities involved in the transfor-
mations (1), (4), and (5) can be efficiently calculated by
using the forward and backward probabilities (Baum, 1972;
Jelinek, 1976; Bahl et al., 1983; Levinson et al., 1983). To
simplify the notation, the superscript for the token index and
the subscript for the allophone index will be dropped below.

The forward probability is

a,(j)=P(0,,0,...,0,,5, =)

= Z a,_,(Na;;b;;(0,), (6)
i=1
with
o 1, forj=1,
%()) = {o, forj> 1.
The backward probability is
Bt(j)EP(OH—1’01+2,‘--’0T|st =])
N
= Z Bi i1 (Da;b; (o, ), (7
i=1
with
. 1, forj=N,
Brl)) = 0, forj<N.

Once the forward and backward probabilities are computed,
the probability appearing in (1), (4), and (5) that the se-
quence O is observed and that the state transition from i to j
occurs from time ¢ — 1 to ¢, can be calculated by

P(O’sr— 1.5 i,St =]) =a,_, (i)aub,j(ot)ﬂz(j), (8)
and the probability that the sequence O is observed and that
state 7 is occupied at time ¢ is calculated by

P(O,s, = 1) = a, (), (). (9

The probability of the observation sequence for each to-
ken is (for the left-right HMM model)

P(O|M) = a,(N). (10)

In summary, during each iteration of the model reesti-
mation, the following steps are carried out: (1) Calculate the
forward and backward probabilities by Egs. (6) and (7);
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(2) calculate the state transition probability, the state occu-
pation probability, and the probability score by Egs. (8)-
(10), and from these calculate the conditional state transi-
tion and state occupation probabilities by Egs. (2) and (3);
(3) accumulate the quantities appearing in Egs. (1), (4),
and (5) over frames, over tokens, over the state transitions
(only for covariance matrix estimation ), and over allophone
groups (only for mean vector and covariance matrix estima-
tion); and (4) reestimate the model parameters according to
Egs. (1), (4), and (5).

lIl. EXPERIMENTS ON ISOLATED WORD
RECOGNITION

An overview of our large vocabulary isolated word re-
cognizer (without the use of vowel durational models pre-
sented here) can be found in Gupta et al. (1988) and Deng
etal. (1988). Briefly, the recognition process consists of
word end-point detection, a fast search algorithm to gener-
ate a list of most likely word choices, and the computation of
exact likelihoods for these choices. The durational allophone
vowel models presented in this paper are only introduced at
the exact likelihood scoring stage. Since the phonetic tran-
scription of each candidate word is known, so is the phonetic
context of the constituent vowel during the exact likelihood
computation. This allows one of the three vowel allophones
to be deterministically selected to score each observation.

Training and test data were recorded in a quiet sound
booth. Two sets of the training and test data were used, one
consisted of texts comprising natural-language sentences
and the other consisted of words with consonant clusters and
of consonant-vowel-consonant (CVC) or consonant—vow-
el-consonant—-vowel (CVCV) sequences. The training data
had 1102 words in total. The test set consisted of 312 special
words selected to be highly confusable (most of them were
CVC and CVCV) and 782 words from natural text. The
same two distinct sets of training and test data were used in
the two sets of experiments using durational and standard
vowel HMMs.

The performance of the recognizer is evaluated using
the following three criteria. The first criterion is the percen-
tage of words correctly identified as the top word choice by
the recognizer (since no language model is used, homo-
phone confusions are not counted as errors). The second
criterion is the average rank of the correct word in the or-
dered list of word hypotheses. Even if recognition accuracy
is unchanged, a lower average rank is evidence of better like-
lihood estimation that may lead to better recognition accura-
cy when additional information (e.g., a language model) is
introduced. The third criterion is the average difference
between the log probability of the correct word and the lar-
gest log probability among the incorrect words. A higher
average difference reflects better discriminability.

A comparison of the recognition performance using
vowel HMMs with and without incorporating durational
information is shown in Table II for a 782-word natural text
test set and in Table III for a 312-word CVC(V) test set. Use
of the vowel durational HMMs (column B), compared with
use of standard HMMs (column A ), consistently improves
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TABLE II. Comparison of recognition performance with and without vow-
el durational models for natural-text data set. Column A: one HMM per
vowel; column B: three HMMs per vowel with tied output distributions;
column C: three HMMs per vowel with separate output distributions.

Natural text set (782 words)

Performance

measure A B C
Percent correct 84.6 86.8 79.4
Average rank 1.72 1.57 1.79
Ave. diff. of log scores 31.7 34.8 30.2

the recognizer’s performance for all three evaluation criteria
for both the CVC(V) and the natural text sets. For the natu-
ral text set, the error rate is reduced by 14.3%, and, for the
CVC(V) set, it is reduced by 13.3%.

We should emphasize that the vowel durational models
improve recognition only when the model robustness is
maintained by tying the output distributions for all three
allophone models. To illustrate this, an experiment was per-
formed where the output distributions were not tied. The
recognition performance, shown in column C of Tables II
and III, is significantly poorer.

To gain insight into the advantages of using the new
vowel durational models, we examined the word recognition
errors corrected or introduced by using the vowel durational
allophones. Table I'V shows these data. The first column lists
the words in the test data on which errors have been correct-
ed (marked by 1/ in the fourth column) or new errors have
been introduced (marked by X ). The phonetic transcrip-
tions of the recognizer’s top choice output words are listed in
the second and third columns, respectively, for the recog-
nizers without and with vowel durational models.

An examination of the errors under the different model-
ing conditions shown in Table IV reveals that vowel dura-
tional models provide two different types of advantages.
First, incorporation of vowel duration into the HMM simply
makes the model a more precise discriminator of the vowel
itself. This accounts for many error corrections such as
[laks] to [laeks], [bajt] to [bat], and so on. Second, vowel
duration provides a cue to the syllabic coda (voiced or voice-
less) and to the syllable type (open or closed). Thus better
modeling of the vowel not only helps avoid vowel confusions
in recognition, but also improves the discrimination of con-
sonants in the syllabic coda. Evidence for this is found in
correction, from [dajz] to [dajs]. Many errors due to weak-
ly released voiceless stops have been corrected by using vow-

TABLE III. Comparison of recognition performance with and without
vowel durational models for CVC(V) test set.

CVC(V)set (312 words)

Performance

measure A B C
Percent correct 63.8 68.6 62.0
Average rank 2.58 2.30 2.80
Ave. diff. of log scores 6.2 11.0 6.1
Deng et al.: Vowel duration in a large vocabulary recognizer 545
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TABLE IV. List of test words on which recognition errors were corrected or newly introduced.

Top choice using

Top choice using

Error correction (/)

Test words standard HMMs duration HMMs or new error (X )
a [pei] payee [e] Vv
are [awr] our [ar] v
background [baekgrawnd] [baekant] bacchant X
beg [bed] bade [beg] v
bid [bid] bead [bid] Vv
bitter [bitr] [bitr] beater X
but [bajt] bite [bat] 1%
coat [kot] [krot] Croat X
colon [kalom] column [kolon] Vv
deacon [pikin] Pekin [dikon] v
dice [dajz] dyes [dajs] 1%
digger [ditr] deter [digr] Vv
eat [i] E [it] Vv
fan [feen] [fen] fen X
future [titr] titter [fjutfr] v
gate [kit] keet [get] Vv
gave [gev] [gIv] give X
guess [gees] gas [ges] v
have [hav] halve [haev] Vv
height [haj] high [hajt] v
is [iz] ease [1z] 14
lax [laks] lox [laeks] v
lost [1ast] lust [Iost] Vv
me [mi] [ni] knee X
nineteen [bajtin] biting [najntin] v
one [wan] wan [wan] v
pip [pep] pep [p1p] Vv
pipe [hajp] Aype [pajp] 4
pity [pIni] pinnae [prti] v
pride [kajnd] kind [prajd] v
right [raj] rye [rajt] Vv
slight [slaj] sly [slajt] Vv
S0 [sto] stow [so] v
than [Oaen] [8en] then X
then [6aen] than [den] v
tick [tek] take [tik] v
told [kold] called [told] v
tried [tfrajad] triad [tfrajd] v
was [wajz] wise [waz] Vv
why [wajni] winy [waj] Vv
will [wo] woe [wil] v

el durational models, due to a cue provided by the vowel
duration as to whether the vowel is in an open syllable or in a
syllable closed by a voiceless consonant.

A similar experiment was performed with speech of a
second male speaker (Montreal dialect) for 396-word natu-
ral-text test data. The recognition results are shown in Table
V. Use of the vowel durational models improved the recogni-

TABLE V. Comparison of recognition performance with and without vow-
el durational models for speaker 2. Column A: one HMM per vowel; col-
umn B: three HMMs per vowel with tied output distributions; column C:
three HMMs per vowel with separate output distributions.

Natural text set (396 words)

Performance

measure A B C
Percent correct 77.0 79.3 68.7
Average rank 1.70 1.65 2.30
Ave. diff. of log scores 30.5 33.0 19.0
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tion rate from 77.0% to 79.3%, a 10% reduction in the error
rate. Table V1 lists the recognition errors corrected and new-
ly introduced by using the vowel durational models in the
same format as Table IV for the first speaker.

The standard calculation of the 95% confidence inter-
val for proportion (Freund and Walpole, 1980) shows that
the improvement of recognition accuracy by using vowel
durational models is statistically significant for both speak-
ers (p <0.025). Although these results need to be confirmed
on data from additional speakers, they already suggest that
we are extracting durational cues utilized consistently by
speakers of the language.

IV. SUMMARY AND DISCUSSION

The major contribution of this paper is to establish a
method to exploit certain allophonic information in the
framework of phonemic Markov modeling, yet maintain ro-
bustness in the estimation of the model parameters. The allo-
phonic information exploited is that provided by vowel du-
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TABLE VL. List of test words on which recognition errors were corrected or newly introduced for speaker 2.

Top choice using

Top choice using Error correction (1)

Test words standard HMMs duration HMMs or new error (X))
about [abat] abut [obawt] Vv
and [end] end [zend] v
background [reekrent] rack-rent [bekgrawnd] v
capital [keepatl] [keeprl] caporal X
do [dju] dew [du] v
dug [dag] [dajnd] dined X
good [pn] pin [gud] %
his [pez] pays [hiz] 4
immigration [1ntagrefon] integration [1magrefon] Vv
new [mju] mew [nju] v
nineteen [majtinas] mightiness [najntin] v
not [nat] [blat] blot X
oar [or] [lor] lore X
once [wanz] ones [wans] Vv
presented [ prizentativ] presentative [ prizentid ] v
sure [fr] shirr [fur] v
swinging [swipln] sweeping [swinig] v
Venis [vendrz] vendors [venis] v
why [wajd] wide [waj] Vv
what [wajt] white [wat] Vv
with [w1d6] width [wif] v
year [jir] [ira] era X
years [jirz] [girz] gears X

ration concerning the identity of the vowel as well as features
of the consonantal environment. The information is extract-
ed by allowing multiple sets of transition probabilities in
each of the vowel HMMs corresponding to different dura-
tional allophones, training them in an optimal way, and ac-
cessing them appropriately at recognition time. The robust-
ness of such models is largely maintained since most of the
model parameters, those of the output distributions, are tied
across allophones.

Tying of the output distributions across allophones is
reasonable because the overall spectral shape, which the out-
put distributions intend to model, appears to be similar for
allophones with different durations. To a first approxima-
tion, vowel duration is independent of the spectral shape.
Thus it is appropriate to train the transition probabilities
(determined mainly by the duration) independently of the
output distributions. The significantly poorer recognition
results obtained when all model parameters are training in-
dependently for each allophone due to undertraining are
avoided by this approach.

We have shown that the HMMs incorporating context-
dependent vowel duration information consistently improve
the performance of our large vocabulary recognizer. About
14% reduction in error rate has been achieved both for the
natural text set as well as for the more difficult CVC(V) set.
In fact, in the natural text set, most errors corrected by the
new vowel durational models are from the monosyllabic
CVC words (see Table IV). However, for most of the misre-
cognized polysyllabic words that did not get corrected by the
vowel durational models, we still observe that the differences
are reduced between their scores and the scores of the words
incorrectly identified as the top choices, as is reflected in the
third measure of the recognizer’s performance. The perfor-
mance improvement by using the vowel durational models
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lies not only in the fact that such models represent vowels
themselves more faithfully, but also that they provide cues to
the nature of the following consonants. Due to lexical con-
straints of the language, modeling of vowels and consonants
is highly interdependent.

As can be seen from the error rates in Table III, CVC-
type words present the most difficulty for our recognizer
because of their potentially high phonetic confusability, or,
viewed another way, their weaker lexical constraints as com-
pared with polysyllabic words. Although the error rate re-
duction is similar for CVC(V) and natural text sets in our
present experiments, the proportion of error correction for
only monosyllabic words is significantly larger for the natu-
ral text set than for the CVC(V) set. This can be accounted
for by the fact that our CVC(V) set was chosen to be highly
confusable. Such results, on the other hand, suggest that the
power of vowel durational models in discriminating the
highly confusable CVC(V) words is limited. More precise
(and no less robust) modeling of consonants as well as vow-
els is needed to further improve the performance of the re-
cognizer.
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