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Abstract

We apply a trigram language model to an 86 000-word vocabulary
speech recognition task. The recognition task consists of paragraphs
chosen arbitrarily from a variety of sources, including newspapers,
books, magazines, etc.

The trigram language model parameters correspond to probabilities
of words conditioned on the previous two words. The number of
parameters to be estimated is enormous: 86 000° parameters in our
case. Even a training set consisting of 60 million words is too small to
estimate these parameters reliably. Parameter estimates using relative
frequencies would assign a value of zero to a large fraction of the
parameters. Many algorithms have been proposed to estimate
probabilities of events not observed in the training text. We propose
here a simple algorithm for estimating the probabilities of such events
using Turing’s formula.

The resulting trigram language model reduces the acoustic
recognition errors by 60%. We also show that the effectiveness of the
trigram language model for correcting an acoustic word recognition
error depends on whether or not the neighbouring word contexts
occur in the training text corpus for the language model.

1. Introduction

The task of the 86 000-word recognizer designed by INRS-Télécommunications is to
transcribe speech into text automatically. The recognition task is divided into two parts:
acoustic recognition and language-model-based sentence decoding. For each word of
spoken input, the acoustic recognizer generates a list of word hypotheses and their
associated acoustic likelihoods. The language component takes this probabilistic word
lattice as input and uses a statistical model of the syntactic, semantic and pragmatic
properties of English to generate the a posteriori most likely word string. The focus of
this paper is statistical language modelling.

A number of language models have been used previously for speech recognition. The
trigram language model (Jelinek, 1985) has been used successfully for both a 5000-word
and a 20 000-word office correspondence task (Averbuch ez al., 1987). Derouault and
Merialdo (1986) use a tri-POS (parts-of-speech) model for a 250 000-word French
recognizer. Application of a trigram language model to a recognition task with such a
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large vocabulary was considered infeasible by Derouault and Merialdo (1986). They also
apply global syntactic constraints using a sentence parser. However, application of
global syntactic constraints results in only a marginal improvement in the recognition
accuracy of their system. The advantage of a tri-POS language model is that it requires
significantly less memory for storage than a trigram language model and can be trained
from a small training text corpus. However, the tri-POS language model estimates the
probability of a word conditioned on the parts-of-speech of the previous two words,
resulting in much weaker linguistic constraints than the trigram language model. Lee
(1988) and Rohlicek, Chow and Roucos (1988) have used a simpler bigram or word-pair
language model in a 997-word resource management task. To make best use of the
available syntactic and semantic constraints, we have used a trigram language model in
our 86 000-word vocabulary recognition system.

A number of algorithms exist for estimating parameters for the trigram language
model from sparse data. These algorithms include the deleted interpolation method
(Bahl, Jelinek & Mercer, 1983) and the backoff method (Katz, 1987). In the deleted
interpolation method, the probability of word w; conditioned on the previous two words
w, and w,, P(w;lw,w,), is computed as a weighted average of the relative frequencies'
Slw,lw,w,), flwslw,) and flw,) in the training text corpus. The deleted interpolation method
requires large amounts of storage for the parameters since both the weights and the
relative frequencies are stored. The weights are estimated using the forward-backward
algorithm, which requires significant computing. The backoff method (Katz, 1987) is
storage efficient as it does not require storage of weights. It uses Turing’s estimate (Good,
1953) to compute the probability mass of all the trigrams which do not occur in the
training text corpus. This probability mass is then distributed among the unseen trigrams
using the bigram and monogram counts. In our implementation of the trigram language
model, we estimate the probabilities P(w,|w,w,) for the trigrams w,w,w; which do not occur
in the training text corpus by direct application of Turing’s estimate, without resorting to
bigram and monogram counts to partition the probability mass.

To obtain reliable trigram statistics for our 86 000-word recognizer, we analysed a
language model training text corpus containing 60 million words. Application of the
trigram language model results in a significant reduction in speech recognition errors,
verifying the feasibility of using a trigram language model for a very large vocabulary
recognition task.

2. Overview of the word recognizer

A block diagram of the recognizer is shown in Fig. 1. Words are recognized in two steps.
The first step is the acoustic recognition of the spoken words. The acoustic recognizer
has been described in detail by Gupta, Lennig and Mermelstein (1988). We will only
discuss here the details pertinent to language modelling. The input to the acoustic
recognizer consists of words separated by pauses of at least 150 ms. The spoken text
consists of sentences read (without punctuation) from text which was selected randomly
from magazines, books and newspaper articles. An end-point detector segments the
acoustic data 4 for the spoken word string W=w{=w,w,,...,w, into subsegments
A'=A,,...,A, corresponding to the words w.w,,...,w, in the word string. For each

; s : Clww,w
! For example, the relative frequency of w, conditioned on the context w,w; is fiw/w,w,) = %[vlt#]j]’ where
172

the function C counts the number of occurrences of its argument in the text.
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Figure 1. Block diagram of the large vocabulary speech recognition system.

segment A, the acoustic recognizer generates a list w,,...,w,, of N, most likely word
choices, together with their likelihoods (P(4]w,),j=1,...N). These likelihoods are
smoothed by taking their seventh root before being passed to the second step of
recognition. Such a normalization achieves a balance between likelihoods derived from
the language model and the acoustic recognizer (Bahl et al., 1980). (The value of seven
for the normalizing constant was derived by experimenting on a test set not used in this
paper.) The probabilities:

P(A|W,)= P(4)|0,, ) P(4s|wy,) . .. P(A,|o,,),

where ;, corresponds to one of the hypothesized words for the acoustic segment A ;» are
used in the second step of recognition.

The second step of word recognition applies the trigram language model to find the
most likely word string W using:

W=argmax P( W) P(A|W)).
Wi

The acoustic recognizer generates the probabilities P(4|W,), while the language model
provides the probabilities P(W)). The search algorithm we have used to find W is called
the stack decoding algorithm (Jelinek, 1976), also known as the A4* algorithm (Nilsson,
1980). The focus of this article is the language model which estimates the word-string
probabilities P(W)).
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3. Text databases

We have used four different text databases to train our language model. The first
database is the Brown Corpus (Francis & Kucera, 1979) consisting of 1-1 million words
of text collected from different sources to represent written American English in 1960.
The second database, called hansard, consists of 14 million words of text from the
proceedings of the Canadian Parliament in Ottawa. The language in hansard is more
formal and contains repetitious use of many words and phrases, resulting in a low
perplexity of around 70. (The perplexity for the text from the Brown Corpus and the
newspapers is higher and varies from 500 to 1000.) The third database consists of 22
million words of text from The Globe and Mail newspaper published in Toronto. The
fourth database consists of 23 million words of text from The Gazette newspaper
published in Montreal. All together, we have trained our language model with 60 million
words of text.

4. The lexicon

All recognition experiments reported here are based on a vocabulary consisting of 86 000
orthographically distinct words. For example, book and books are considered two
different words in the lexicon. The philosophy behind the design of this dictionary has
been described in detail elsewhere (Seitz et al., 1988, 1989). In short, the 86 000 words in
our lexicon include the 60000 words in the Merriam Webster’s Seventh Collegiate
Dictionary (1965). The remaining 26 000 words are taken from the most frequent words
in an 11-million word text corpus (consisting of the Brown Corpus and a 10-million word
subset of The Globe and Mail). These additional 26 000 lexical items include many
names, acronyms’ and inflected forms of words.

5. Estimation of parameters for the trigram language model

The trigram language model estimates the P(W) for all possible word strings W= w} in
the language as:

POW) = P(w) POws wy) [T POovfwi = ).
i=3

In the trigram language model, the only parameters to be estimated are the conditional
probabilities P(w,|w?) for all possible words w,, w,, w, in the lexicon.

In our case, the total number of parameters to be estimated for the trigram language
model is 86 000°. Estimating these conditional probabilities using relative frequencies
requires a very large training text corpus to obtain reliable statistics. Such corpora are
not available today. Additionally, training using such large corpora could require
excessive amounts of computation and storage. We therefore resort to an alternative
technique, one using Turing’s estimates (Good, 1953) to compute statistics from
insufficient data.

Let us first outline Turing’s estimates of word probabilities. To estimate word
probabilities from a text corpus of size N, let n, denote the number of words which occur
exactly r times in this text. Then the probability of the word w which occurs exactly r
times in the text is given by:

2 Acronyms are treated as single words. For example, GNP is represented as /d3ienpi/.
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Pwy=0E Dy M)

r

The quantity Lrj_—}% is the probability mass of all the words which occur exactly r
times in the text. Turing’s Formula (1) is an empirical Bayes’ estimator of a multinomial
probability (Nadas, 1985).

In this application we have used Turing’s Formula (1) primarily to estimate the
conditional probabilities P(w,|w?) when the trigram wj is not observed in the training text
corpus. (Note that, using Turing’s Formula, the probability of a word (or n-gram) not
observed in the text is nn—]‘v). This probability mass has to come from probability mass of

0
trigrams with counts greater than zero. We have accounted for this probability mass by
renormalizing the probability masses for trigrams with small counts in the training text.

Let us first estimate conditional probabilities P(w,|w?) for trigrams w} not observed in
the training text corpus. The estimation of these conditional probabilities can be divided
into three cases: when the bigram w3 is observed in the training text, when the bigram w3
is not observed but the word w, is observed and when the word w, does not occur in the
training text.

If the bigram wj is observed in the training text, we estimate the conditional
probability P(w,|w}) as an average over all the words w, for which the trigram w,w,w,
does not occur in the training text:

z,. P
M w ZC[WHW2W3]=0, )

P(W3|W1W2)= Y Plww)’' @
Wa a'?

where the function C counts the number of occurrences of its argument in the training
text corpus. To estimate the numerator, we group together all trigrams with the same
two last words wj. Denote by C[w,: C[ww,w,]=1], the total count of all possible
trigrams of the form w,w,w, which occur only once in this group. Then the estimate of
the total probability mass for trigrams w,w,w, in this group with a count of zero (using
Turing’s Formula) is (C[w,: C[w,w,w,]=1]/N,), where N, is the total number of tri-
grams in this group. Over the entire training set, the total probability mass is
(Clw,: C[w,w,w]=1]/N,)(N,/N), where N is the total number of trigrams in the training
text.

The denominator in Equation (2) is the total probability mass of all bigrams of the
form w,w,, where w, corresponds to all possible words with C[w,w,w,]=0 in the training
text corpus. In general many such bigrams (w,w,) occur in the training text corpus, and
we do not have to rely on Turing’s Formula to estimate their probability mass. We
compute the denominator in Equation (2) as:

Y P(w,wy) =Y P(w,w,)— Y P(w,w,)

wa:C [wawaws] =0 Wa wa:C [wawaw3] >0

=Clw)N— Y Chwwl/N

wa:C[wawaws] >0

~ C[w,]/N.
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The last approximation is reasonable in most cases. When C[w,] is reasonably large, the
second sum is significantly smaller than the first sum. The only time the approximation is
not accurate is when the count C[w,] is small. In such cases, the conditional probability
estimates are not going to be accurate in any case, and such approximations will not
affect recognition accuracy. We have experimented with language models with and
without this approximation. The approximation only affects a few words in the 7000-
word test set, and the overall recognition accuracy is not affected.
On dividing the numerator by the denominator in (2), we get:

P(wslwywy)=Clw,: Clw,ww;] = 1)/C[w,]. ©)

This is a nice result, since the conditional probability is based on reasonably large counts
for the numerator and the denominator. Note that, in Equation (3), the conditional
probabilities are no longer proportional to the bigram counts. In a few cases, it is
possible that even though the bigram w,w, occurs, the count C[w, : C[w,w,w,] = 1] is zero.
One example is when the sequence w,w,w, occurs more than once, and w, does not occur
anywhere else in the entire text. In such a case, we feel that using the count C[w,w,w,]
would result in a rather high estimate of the probability P(w,|w,w,) for trigrams with
C[w,w,w,]=0. Therefore, when C[w,: C[w,w,w,]= 1] is zero, we fall back to case two or
three as appropriate. In other words, case one applies when C[wi]=0 and C[w,: C-
[ww,wy]=1]>0.

In the second case we estimate the conditional probability P(w,/w}) when C[w3]=0,
but C[w,]>0. In this case we estimate the P(w,/w,w,) as an average over all bigrams
w,w, : C[w,w,]=0. We have:

. Pwww,)
P(w 2\ — Swawyp ab 3’ -C =0. 4
( 3|W1) %, . POv,w,) wy: Clwyws] 4
In Equation (4) the numerator is estimated by grouping together all bigrams with the
same last word w;. The total probability mass in this group for all bigrams with
Clw,w,]=0 is given by C[w, . C[w,w,]=1]/C[w,]. Over the entire text, the probability
mass is C[w, : C[w,w,]=1]/C[w;](C[w,]/N). The denominator can be evaluated as:

Y,  Poww)= Y Pwwy)— ) Pww,)

wawp:C [wpws] =0 WaWh waws:C [wswi] >0

=1- Z P(wawb)

waws:C [wsws] >0

~ 1.

Note that the approximation is quite reasonable, since there are very few words w, for
which C[w,w,]>0, and the second term is significantly smaller than one. (We have tried
our language model with and without this approximation, and we find that the
approximation does not affect the recognition results for the 7000 words on which the
language model was tested.) In other words, Equation (4) can be written as:

P(wy|w,wy) = C[w, : C[w,w;]=1]/N. (%)
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In a few cases it is possible that even though the word w, occurs, the count
Clw,: C[w,w,]=1] is zero. One example is when the sequence w,w, occurs more than
once, and w, does not occur anywhere else in the entire text. In such cases we feel that the
sequence w,w, should not be used to estimate the probability P(w;|w,w,) as it may lead to
probability estimates which are too high. In such cases we fall back to the third case. In
other words, case two applies when C[w3]=0 and C[w,: C[w,w;]=1]>0.

In the third case we evaluate the conditional probabilities P(w,|w?) when C[w,]=0.
P(w,|w?) is evaluated as the average probability over all words w, in the vocabulary such
that C[w;]=0. We have:

(1/N)Zw,wyw, P(w,w,w,)
P = ab c ~ a0 ¢y :Clw]=0, 6
(W3|W] WZ) ZWaWb P(Wawb) W, [wc] ( )

where N, is the total number of words in the vocabulary which do not occur in the
training text corpus. Using Turing’s Formula, the numerator in Equation (6) is
evaluated as (1/N))C[w,: C[w]=1]/N, and (6) is reduced to:

P(w,lw,wy)=C[w,: C[w]=1]/NN,. @)
Equations (3), (5) and (7) are used to compute the conditional probabilities P(w;|w}),

when C[wi]=0. The complete set of equations for computing the conditional probabili-
ties for all possible trigrams w; is:

P(w;|w})=C[wi]/Clwil, if C[w3]>2 (8a)
=dx Cwi)/Cwil, if C[w{]>0 (8b)
=dXx Clw,: C[w,w,w;]=1]/C[w,], if Clw,: C[w,w,ws]

=1]>0 (8c)
=d x C[w,: C[w,w;]=1]/N, if C[w,: Clwyw;]=1]>0 (8d)
=dx C[w,.:Clw]=1]/NC[w,:C[w,]
=0], otherwise (8e)

where d is a renormalization factor so that £ ,P(w;/w}) adds up to one. When the total
mass of the trigrams in Equation (8b) is large, then the factor d'is close to 1-0. The factor
d is much smaller when the total mass of the trigrams in Equation (8b) is small. Because
of the small mass, we have less confidence in the relative frequencies, and a significant
portion of this mass is distributed into unseen events through Equations (8c), (8d) and
(8e). There could be other ways of choosing the renormalizing factor d, and d does not
have to be the same for Equations (8b)—(8e).

Equations (8a)—(8e¢) are quite simple to implement for very large training text corpora.
In our implementation we have assumed that the conditional probabilities P(w,|w?) can
be correctly estimated from the relative frequencies f{w,/w,w,) when C[w]]> 2, while the
conditional probabilities involving trigrams with counts of two or less are all renorma-
lized by a factor d so that Zw,P(w;|w}) adds up to one.

The above equations were applied to train a language model from approximately 60
million words of text: one million from the Brown Corpus, 14 million from the debates of
the Canadian Parliament, 22 million from The Globe and Mail newspaper and 23 million
from The Gazette newspaper stories. In training the language model we ignore all
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punctuation. For example, in the word sequence Mary went to Canada. In Canada, the
sequences to Canada in and Canada in Canada are considered trigrams. This is consistent
with the way the text is read: without pronouncing punctuation marks or explicitly
indicating which words are capitalized.

6. Comparison with the backoff language model of Katz

Equations (8a)—(8e) are quite different from the recursive procedure outlined by Katz
(1987) for his backoff algorithm. It is interesting to compare Katz’s backoff algorithm
with the algorithm outlined here. The major difference is in the way we estimate
probabilities P(w,|w,w,) when C[wj]=0. In the case of Katz’s algorithm, a conditional
probability mass f(w?) (Katz, 1987) is distributed among all w, such that C[wj]=0, and
the estimate P(w,/w?) is proportional to P(ws/w,). The conditional probability mass
Clw,w,wi]
Clw,w,]
coefficient d,, is distributed among all w, for which C[wj]=0. The distribution among
various w, is done according to the conditional estimates P(w,|w,). When C[w,w,]=0, a
similar argument is used to compute and distribute the probability mass according to the
estimates P(w,).

For the estimates given by Equations (8a)—(8e) we estimate the probability mass as
C[w, : C[wj]=1]/N (as opposed to the use of discounting by Katz) and distribute this
mass over all w, such that C[wj]=0. We feel that, in order realistically to estimate
P(ws|w?), the probability mass of w} should depend on occurrences of w3, or w3 or w;,
wherever possible. This change in the way we estimate the probability mass leads to
some differences in the probability estimates. In many cases, Katz’s estimates are close to
those obtained by us. In cases where very few samples are available, we see major
differences in the estimates for conditional probabilities. Let us examine some of these
differences in detail.

Let us compare the case when C[wi{]=0 but C[w3]#0. Consider two possible cases
under such circumstances. First, take a case where the sequence w,w,w,_ occurs five times,
and the words w, and w, only occur in these five trigrams. According to Katz’s estimate,
P(w,|w,w,) (w,#w,) is proportional to P(w,). We split this situation into two possibilities
(Equation 8d or 8e). If C[w,: C[w,w]=1]>0, then Equation (8d) applies. If C[w,] is
large, then C[w, : C[w,w,]=1] will be proportional to C[w,] (approximately 60% of the
bigrams have a count of one), and therefore P(w,/w,w,) will be proportional to P(w,). In
such a case, Katz’s estimates are similar to our estimates. In the second case, when
Clw,: C[w,w]=1]=0, our estimates are given by Equation (8¢). This can happen, for
example, when w, occurs only in one bigram w,w, many times. In such cases, our
estimate of P(w,w,w,) will be significantly lower than the estimate due to Katz. We
could argue that our estimate is appropriate since the bigram w,w, is special and it should
not contribute anything towards the estimate of the P(w,w,w,). Obviously, we can also
argue that the estimates differ because of the small amount of data available to estimate
these conditional probabilities, and how we interpret this sparse data.

Let us take another case where C[w w,w,]=0, but C[w, : C[w,w,w ]=1]>0. In such a
case, Katz’s estimate of P(w,/w,w,) is proportional to P(w,w,). In our algorithm, the
probability is determined by Equation (8c). When the count C[w,w] is reasonably large,
the count C[w,w ] is proportional to the count C[w,: C[w,w,w = 1] (approximately 75%
of the trigrams have a count of one). In such cases, the probability P(w,ww,) is

B(w?), computed by discounting the relative frequencies using a discounting
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proportional to P(w,w,). However, when the bigram w,w, occurs in very few distinct
trigrams, then our probability estimates can differ significantly from those obtained by
Katz. For example, let us assume that the bigram w,w, occurs five times in the text
corpus, and w, and w, do not occur anywhere else in the text. In this case, P(w,w,w,) is
proportional to P(w,w,) in Katz’s case. In our case, the probability estimates vary
depending on the count C[w, : C[w,w,w]= 1], which can be as high as five and as low as
zero. It can be zero when w, occurs five times in the sequence w,w,w,and nowhere else. In
such a case, the probability estimate P(w,w,w,) is based on Equation (8¢). Our
probability estimate is much smaller than that due to Katz. We can argue that our
probability estimate is much more realistic than that due to Katz. In reality, both
estimates are probably way off due to a small sample size. We can similarly pick many
cases where our probability estimates differ significantly from those of Katz, but the
primary reason is the very small number of samples involved in these cases and the
interpretation of these observed samples.

7. Recognition results

We have applied the language model on a total of 7240 words spoken by five male and
five female speakers. The perplexity (Jelinek, 1985) of this text is 670. The words spoken
were taken from various newspaper articles, books and magazines. These articles
represent discourse domains similar to the training text corpus. Some samples of the test
text are given in the Appendix. The speakers did not pronounce the punctuation marks
(comma, period, etc.) in the text. Since we do not attempt to hypothesize phrase or
sentence markers in the recognized word sequences, we only quote a word recognition
rate (and not a sentence recognition rate).

Let us first look at details of the acoustic recognizer pertinent to the discussion here.
For each word, the acoustic recognizer uses a fast graph search algorithm (Gupta,
Lennig & Mermelstein, 1988) to restrict the possible word hypotheses to a maximum of
300 word choices. These hypotheses are then reordered using exact likelihood scores.
Since the fast graph search algorithm uses rough likelihoods to rank word hypotheses, it
is possible that the correct word would have ranked near the top, even though it was
missed by the search algorithm. In fact, if we put the correct word back in the hypothesis
list, then approximately 20% of the correct words (missed originally) would be classified
as the top choice. Also, 40% of these words would turn out to be top choices after the
language model. Hence, when the correct word is missed by the fast graph search
algorithm, we call it a search error. In all the experiments reported here, we have not put
back the words which were missed by the search algorithm.

It is interesting to examine where the language model is most effective in correcting
acoustic recognition errors. We analysed the language model’s ability to correct acoustic
recognition errors as a function of the coverage of the word and its context by the
training set of the language model. Each word in the test set is classified into one of six
possible context coverage categories based on the neighbouring words found in the
training text corpus. To clarify these coverage categories, let us consider the word sank in
the partial test sentence every chair sank several inches. The word sank will be classified
into one of the six categories as follows.

e Five-word context: if Clevery chair sank]>0 and C[sank several inches]>0 in the
training text, then we consider word sank to have a five-word context. Note that we
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are not implying that the sequence every chair sank several inches occurs in the
training text nor that the sequence chair sank several occurs in the training text. We
are only saying that both the sequences every chair sank and sank several inches are
observed in the training text.

e Four-word context: if Clevery chair sank]>0 and C[sank several]>0, or C[chair
sank]> 0 and C[sank several inches]> 0 in the training text, then the word sank has a
four-word context.

e Three-word context: if C[every chair sank]>0 and C[sank several]=0, or C[chair
sank]=0 and C[sank several inches)> 0, or C[chair sank]> 0 and C[sank several]>0
in the training text, then sank has a three-word context.

e Two-word context: if C[chair sank]>0 or C[sank severall> 0 (but not both) in the
training text, then sank has a two-word context.

e One-word context: if C[chair sank]=0 and C[sank several]=0, but C[sank]>0 in
the training text, then sank has a one-word context.

e Zero-word context: if C[sank]=0 in the training text, then sank has a zero-word
context.

In the following text, when we refer to a test word having three-word context, we
mean that for this word the conditions outlined are satisfied for the three-word context
above, but not for any higher contexts (four-word or five-word contexts). In Table I we
have tabulated how effective the language model is in correcting acoustic recognition
errors depending on these contexts. In compiling this table we only consider words
where the word hypothesis list includes the correct word, since only these words can be
corrected by the language model. The search algorithm commits 3-4% search errors;
therefore, the acoustic and language model recognition accuracies in Table I have been
compiled from 96:6% of the test words.’ The effectiveness of the language model is
found to be directly related to the context coverage observed for that word. For
example, over 93% of the acoustic recognition errors are corrected for words having
five-word context. Most of the remaining errors for these words are due to very low
acoustic recognition likelihoods.

The language model is able to correct acoustic recognition errors even for words for
which only two-word context is found. That is, the language model is effective even when
only one of the bigrams (with the word on the left or right of it) has a non-zero count in
the training text. One example of a word from our test set having two-word context is
this in the sequence have weighed this thought with. The 60-million word training text has
C[weighed this] =0, C[this thought with]=0, and C[this thought]>0. Another example is
the word wives in the sequence men without wives whereas the. In this case, the training
set has C[without wives]=0, C[wives whereas the]=0, but C[wives whereas]> 0.

The language model increases the recognition errors for words with neither the left nor
the right context in the training text. In such cases, the language model does not have
enough contextual information. The conditional probability is estimated as the average
over all possible preceding words, as is evident from Equations (8d) and (8e). Luckily,
only 5% of the words fall in this category. Some examples of such words are energy and
wasters in the sequence most profligate energy wasters on. Neither the bigram profligate

3Search errors, however, are included in compiling statistics in Table II. Therefore, the recognition
accuracies in Table II are lower than those in Table I. The recognition rate of the acoustic recognizer is given
by the per cent of words for which the top word choice is correct. Homophone confusions are not counted as
errors. For recognition rates using the language model, orthographic differences are counted as errors.
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TaBLE 1. Effectiveness of the trigram language model to correct words
in the test set depending on contexts occurring in the training text

corpus
Context Number of  Acoustic Recognition Percentage of
words recognition with language  acoustic
(%) model (%) errors
corrected
Five-word 2000 883 993 93-6
Four-word 2156 853 979 85-8
Three-word 1646 82-0 93-1 61-6
Two-word 840 81-2 85-1 20-9
One-word 306 80-4 716 —450
Zero-word 47 872 596 —2160
Search errors 245
Average 84-7 94-2 623

energy nor energy wasters occurs in the training text. The word energy does occur in the
training text. The word wasters does not occur even once in the 60-million word training
text. Some other examples of words in the test set which do not occur in the training text
are barnburner, gondolier, heuristics, amoebas, sashaying, luminol, Marley, doorless, etc.

The information in Table I cannot be exploited during the recognition process since
the table is generated using the identity of the spoken words. Does the language model in
fact increase the error rate for words for which no more than one-word context is found
based on their recognized identities? To answer this, Table II reformulates the
information in Table I based on the context found for words as recognized instead of as
spoken. As can be seen from Table II, the error rate does not increase for words with
only one-word context or less. In fact, the error rate goes down marginally for such
words.

Some interesting results are evident in Table II. Recognized words with more
restricted contexts in the training text corpus are less likely to be correctly recognized by

TaBLE II. Acoustic and language model recognition rate depending on
the contexts of the recognized words as observed at the output of the
language model processor

Context Number of  Acoustic Recognition Search errors

words recognition with language (%)

(%) model (%)

Five-word 2215 877 975 0-5
Four-word 2366 83-4 94-5 1-3
Three-word 1581 780 877 37
Two-word 753 753 792 88
One-word 278 65-8 669 216
Zero-word 47 51-0 51-0 383

Overall 7240 81-8 910 3-4
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the acoustic recognition module. In fact, words having zero-word context have only a
51% recognition accuracy. The reason is that words like the which occur frequently in
the training set (for acoustic recognition) are recognized with much higher recognition
accuracy than words like wasters which do not occur in the training set. Only 30% of the
words in the test set also occur at least once in the training set. A higher percentage of
these words correspond to words with five-, four- or three-word contexts than with zero
or one-word contexts. For the same reason, the probability of search error during
acoustic recognition increases with decreasing context. There is a 38% probability of
search error for words with zero-word context (words which do not occur in the
language model training text corpus). Rare words are less likely to be correctly
recognized by the acoustic recognizer, and the language model is also less likely to
correct these errors because of the poor context coverage.

Since the training text corpus does not have enough contextual information for words
having less than three-word context, some alternate strategies could be explored for
improving the recognition accuracy for these words. One strategy could be to use parts-
of-speech contexts instead of word contexts. Another possible strategy is to use a parser
to identify words which result in parsing errors (O’Shaughnessy, 1989). These erroneous
words could then be replaced by alternate hypotheses using the language model.

8. Conclusions

In conclusion, we have shown that a trigram language model can be effectively applied to
reduce acoustic recognition errors in an 86 000-word recognition task. The average
reduction in the error rate is 62%. We have derived a simple algorithm (using Turing’s
formula) for training the conditional probabilities which involve trigrams with zero
counts in the training text. This algorithm allows easy estimation of the language model
parameters from a very large text corpus.

We have also shown that the language model is effective in reducing acoustic
recognition errors for words in the test set which have at least the left or the right word
context occurring in the training text corpus. The language model provides dramatic
improvement for words having more than two-word contexts. To improve the recogni-
tion accuracy of the language model for words with two-word or fewer contexts, a
language model based on parts of speech is suggested. Another possibility is the use of a
parser to identify incorrect word sequences (O’Shaughnessy, 1989). This parser can
identify 30% of the language errors in the form of incorrect noun phrases, unmatched
verbs, loose prepositional phrases, etc. By disallowing such erroneous words or
sequences, we may be able to improve the recognition accuracy of the language model.

Our speech recognition task is from a general discourse domain, consisting of articles
chosen from a variety of sources. Improved performance may be achievable with a
language model trained from a much larger training text corpus collected from many
different sources.
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ing Research Council of Canada.
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Appendix

Some examples of texts used as test sentences are as follows. They are shown here as they
were spoken.

Text 1

the home was as sensually comfortable as the human womb supposedly is every chair sank
several inches at the lightest touch foam and down surrendering abjectly to any pressure the
tufts of the acrylic nylon carpets tickled the ankles of anyone kind enough to walk on them
beside the bar what looked like a radio dial would upon being turned make the lighting
throughout the house as mellow or as bright as the mood demanded located throughout the
house within easy walking distance of one another were contour chairs a massage table and
a motorized exercising board whose many sections prodded the body with a motion that was
at once gentle yet suggestive
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Text 2

his future assignments will involve the research of new algorithms and heuristics to model
and solve new networking problems introduced by integrated network technologies his
strong background in mathematics is sure to be an asset to the department

Text 3

doctors say the most disturbing trend they have noticed in the past few months is the
increase in the number of heart attack victims and other seriously ill patients who turn up in
taxis or on foot instead of in ambulances where they belong that’s because until last month
hospitals were turning away ambulances when their wards became too full except in critical
cases so patients were unable to choose their hospitals

Text 4

the institute noted that conventional wisdom which ignores the potential for energy
conservation holds that global energy use will triple in forty years in north America where
forests and lakes are already threatened by acid rain coal burning may quadruple by twenty
twenty five this would vastly increase sulphur dioxide emissions the major source of acid
rain unless energy conservation measures are implemented in other words the world will pay
an enormous economic and environmental price if it doesn’t wake up the problem is not that
energy efficiency technologies do not exist rather they receive virtually no governmental
support enormous potential exists for energy conservation particularly in Canada where we
have the dubious distinction of being the world’s most profligate energy wasters on a per
capita basis



