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Abstract 

We present a new search algorithm for very large vocabulary continuous speech recognition. Continuous speech 
recognition with this algorithm is only about 10 times more computationally expensive than isolated word 
recognition. We report preliminary recognition results obtained by testing our recognizer on books on tape using a 
60 000 word dictionary. 

Zusammenfassung 

Wir stellen einen neuen Suchalgorithmus zur Erkennung von Kontinuierlicher Sprache bei sehr groBem 
Wortschatz (50 000-100 000 Worte) vor. Mit diesem Algorithmus ben6tigt man fiir die Erkennung kontinuierlicher 
Sprache nur das Zehnfache der Rechenleistung, die zur Erkennung von isolierten Worten ben6tigt wird. Wir 
berichten fiber unsere vorl~iufigen Erkennungsresultate, die wir durch Tests unseres Programms an einem Wortschatz 
von 60 000 Worten erhalten haben. Dieser Wortschatz stammt aus auf Tonb~inder aufgenommenen Bi~chern. 

R6sum6 

On pr6sente un nouvel algorithme de recherche pour la reconnaissance de la parole continue ~ tr~s grand 
vocabulaire. La complexit6 de cet algorithme augmente de seulement dix fois en passant des mots isol6s ~t la parole 
continue. On donne des r6sultats pr~liminaires obtenus en testant le syst~me de reconnaissance sur des livres sur 
cassette utilisant un dictionnaire de 60000 mots. 
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I. Introduction 

In  this paper  we will repor t  our  initial  efforts 
to extend our  earl ier  work on  very large vocabu- 

0167-6393/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved 
SSDI 0167-6393(93)E0078-A 



50 P. Kenny et al. / Speech Communication 14 (1994) 49-60 

lary isolated word recognition (Kenny et al., 
1993a; Deng et al., 1991; Lennig et al., 1990) to 
continuous speech. This project is intended as an 
exploratory study of the feasibility of domain-in- 
dependent  continuous speech recognition and it 
is not geared to an immediate commercial appli- 
cation. 

In order to develop our continuous speech 
training and recognition algorithms we decided to 
work with commercially distributed books on tape 
(analog cassettes). In fact we had little choice in 
the matter  since, when we began work, the Wall 
Street Journal Corpus had not yet been collected 
and books on tape was the only abundant source 
of transcribed speech data which was readily 
available to us. Since this data is not segmented 
into sentences (unlike the Wall Street Journal 
Corpus) we had to design algorithms for training 
and recognition which are capable of handling 
unsegmented data files of arbitrary length. We 
hope that our approach will be of interest to 
researchers working in languages other than En- 
glish (or dialects of English other than General  
American) who do not have large corpora of 
segmented speech data available to them. For our 
part, we have recently begun experimenting with 
books on tape recorded by speakers of Quebec 
French. 

We will report results of experiments per- 
formed on six books recorded by three male and 
three female speakers. We took care to choose 
unabridged recordings without sound effects and 
we used an optical character recognizer to read 
the accompanying texts. Errors made by the opti- 
cal character recognizer were corrected manually 
and the texts were adjusted to account for errors 
made by the speakers. For each book, we desig- 
nated the first and last third of each chapter as 
training data and the middle third as test data. In 
each case, we used 1-2 hours of training data to 
build a collection of speaker-dependent acoustic 
phonetic models and performed recognition ex- 
periments on a 500-1000 word subset of the test 
data. Although all of the experiments reported 
here were performed under  conditions of 
speaker-dependence, we believe that our ap- 
proach can easily be extended to the speaker-in- 

dependent  case. We do not know how many 
books would have to be used to construct ade- 
quate speaker-independent models, but there is 
evidence that a relatively small number would 
probably be sufficient. Kubala and Schwartz 
(1990) report  that recognition results on the 
D A RP A  Resource Management task obtained 
with a relatively large amount of training data 
collected from only 12 speakers (7 male and 5 
female) were comparable to their best results 
obtained with training data collected from 109 
speakers. 

The books we choose are equally divided be- 
tween fiction (a novel by Jack London and two by 
Henry James) and non-fiction (Helen Keller's 
autobiography and two books on current affairs). 
In order to perform recognition experiments with 
such diverse material we had to make some deci- 
sions concerning the dictionary and language 
model. We were confronted with the same issues 
in designing our experimental isolated word rec- 
ognizer. In that case, we found that we could 
obtain an average recognition rate of 93% on a 
variety of texts drawn from newspapers, maga- 
zines and novels by configuring the dictionary 
and language model so as to be domain-indepen- 
dent. We used a dictionary containing transcrip- 
tions of 86000 words (Seitz et al., 1990) which 
was not tailored to any of the test sets (although 
care was taken to ensure that all of  the words in 
the test sets were contained in the dictionary). 
Similarly we used a language model trained on 60 
million words of newspaper text (Gupta et al., 
1992a,b) which was not adapted to any of the test 
material. This language model assigns a "wild- 
card" score to words in the dictionary that are 
not covered in the language model training data, 
so no special provision was needed to handle 
such words when they were encountered in recog- 
nition (but naturally they were a very frequent 
source of errors (Gupta et al., 1992a,b)). 

We used nine speakers to test the isolated 
word recognizer. Five of the speakers read news- 
paper and magazine articles in isolated word 
mode for training and testing. The remaining 
four speakers read from novels (namely Tender is 
the Night, A Confederacy of Dunces, Slaves of 
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New York and Neighbors). It was therefore quite 
natural for us to use books on tape as training 
test material for developping our continuous 
speech algorithms and to adopt a similar 
domain-independent approach in designing our 
recognition experiments. We found that a dictio- 
nary of 60 000 words (obtained by removing the 
very infrequent words from the 86 000 word dic- 
tionary) contained more than 98% of the words 
in the six books we were using. So we decided to 
add the missing words from each of the books 
and use the same vocabulary in all of our experi- 
ments. Similarly we decided to use a common 
language model, namely the newspaper trigram 
model referred to above, at least for our first 
series of experiments. This language model was 
used in exactly the same way as in the isolated 
word recognition experiments. We did not adapt 
the language model to the individual books and 
words in the dictionary which are not covered in 
the language model training data were treated 
simply as wildcards. (But see (Zhao et al., 1993) 
for some preliminary results on language model 
adaptation.) 

We obtained an average recognition accuracy 
of 72% under these conditions (detailed results 
are given in Section 4). This is rather low when 
compared-with the figure of 93% that we ob- 
tained in our isolated word recognition experi- 
ments, but it is not surprising in view of the 
difficulty of the task. We believe that we will 
make more progress in the long run by tackling 
difficult tasks such as this than by limiting our- 
selves to tasks where we can be confident of 
obtaining respectable recognition accuracies from 
the outset. Our work on isolated word recogni- 
tion with an 86000 word vocabulary was con- 
ducted in this spirit and it lead to the develop- 
ment of the very successful STOCKTALK appli- 
cation by the Montreal laboratory of Bell-North- 
ern Research (Lennig et al., 1992). Similarly, we 
found that by tackling the problem of continuous 
speech recognition with a 60 000 word dictionary 
(containing 130000 phonemic transcriptions) we 
were forced to develop new search techniques 
(Kenny et al., 1993a) which found immediate 
application in the STOCKTALK system. 

2. The search strategy 

In order to perform our recognition experi- 
ments, we have developed a new approach to the 
search problem which extends our earlier work 
on searching in the context of isolated word 
recognition (Kenny et al., 1993a). The major dis- 
tinguishing features of our isolated word recogni- 
tion algorithm are 
(i) It is phone-synchronous rather than frame- 

synchronous. (The search advances one 
phone at a time rather than one frame at a 
time.) 

(ii) It is bi-directional (Soong and Huang, 1991; 
Zue et al., 1991; Austin et al., 1991; Kenny et 
al., 1993a). More precisely, it is an A* search 
(Nilsson, 1982) guided by a heuristic ob- 
tained by a reverse-time search of a phonetic 
graph which imposes triphone phonotactic 
constraints on phoneme strings. 

(iii) The heuristic is used to identify the end time 
of the third-to-last phoneme in each partial 
recognition hypothesis (using the "2-phone 
lookahead" property (Kenny et al., 1993a)). 

(iv) The acoustic matches of every segment of 
data with each of the phoneme models (the 
"point scores" (Kenny et al., 1993a)) are 
precomputed before carrying out the search. 
In our current work, phonemes are modelled 
with HMMs and the acoustic match of a 
segment with a phoneme model is calculated 
using the Viterbi algorithm. However, the 
algorithm can incorporate any mechanism 
for calculating point scores; in particular 
non-Markovian models of segment-level fea- 
tures such as energy and duration (Kenny et 
al., 1991; 1993a; Sagayama, 1991) can be 
combined with Markovian spectral models 
(acoustic HMMs). 

When applied to speaker-dependent isolated 
word recognition with a 60 000 word vocabulary, 
most of the computation is taken up by the pre- 
processing (the calculation of the point scores 
and the Viterbi search needed to evaluate the 
heuristic) and the A* search itself accounts for 
only about 1% of the total. In our continuous 
speech recognition experiments (which were per- 
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formed under essentially the same conditions, the 
only major difference being that the quality of the 
audio signal was not as good in the case of the 
books on tape) we have found that the amount of 
pre-processing per unit time remains roughly the 
same, but the amount of computation needed for 
the A* search increases by three orders of magni- 
tude. Hence, the total computational demands of 
the algorithm only increase by a factor of about 10. 

In extending the isolated word recognition al- 
gorithm to continuous speech we decided to con- 
tinue to use the phoneme as the fundamental 
search unit rather than the word. Such an ap- 
proach to continuous speech recognition has been 
extensively developped by Ney et al. (1992) on a 
10 000 word vocabulary in German. Their  decod- 
ing algorithm consists of a Viterbi search of the 
hidden Markov model obtained by combining 
phoneme HMMs with a Markovian language 
model (such as a trigram model). Aggressive 
pruning is necessary since the search space is very 
large. If a bigram language model is used, then 
the search space contains one copy of the lexical 
tree for every word in the vocabulary and in the 
case of a trigram language model, a copy of the 
lexical tree is needed for every possible bigram. 
(But see (Austin et al., 1990; Paesler and Ney, 
1989) for methods of reducing the effective size 
of the search space.) 

The alternative word-based approach to the 
search problem is usually based on stack decod- 
ing (Jelinek, 1969, 1976; Paul, 1991). It depends 
on having a good fast match strategy to identify 
candidate words whenever a word boundary is 
hypothesized. Many different fast match algo- 
rithms have been proposed (Bahl et al., 1988, 
1993; Fissore et al., 1989; Gupta et al., 1988), but 
they have yet to be shown to perform satisfacto- 
rily on continuous speech tasks having very large 
vocabularies. However our principal reason for 
rejecting the word-based approach in favour of 
the phoneme-based approach (at least in our 
initial experiments) is that the phoneme-based 
approach is computationally more efficient in that 
it does not require that the lexical tree be 
searched exhaustively every time a word bound- 
ary is hypothesized. The major drawback of the 

phoneme based approach is in terms of memory 
requirements, since many copies of the lexical 
tree have to be searched simultaneously. The 
memory requirements per unit time of our phone 
synchronous approach are in any case much 
greater than those of the classical frame syn- 
chronous approach, so it was clear to us at the 
outset that we could not attempt to recognize an 
entire sentence at a time. Rather, we had to 
devise a strategy to break the speech data in a file 
into blocks of reasonable size and process the 
data one block at a time. (We encountered a 
similar problem in training since our training data 
was not segmented into sentences. Our approach 
to the training problem is described in the com- 
panion paper (Boulianne et al., 1994).) 

Aside from the need to control memory usage, 
there is a more fundamental reason why block 
processing is necessary. It is obviously not possi- 
ble to recognize speech in real-time using a bi-di- 
rectional search algorithm which requires that the 
second pass through the data be postponed until 
the first pass has been completed. The only sce- 
nario in which a bi-directional search strategy can 
achieve real-time is by processing the data in 
blocks in such a way that the two passes through 
the data in a given block are carried out while the 
data in the next block is being captured. (To be 
precise, the scenario we are describing is real-time 
with a lag of one block rather than strict real- 
time.) 

Our overall strategy can be summarized as 
follows. (Details of the computation needed to 
recognize the data in a given block are given in 
the next section.) We break the data file to be 
recognized into blocks of equal length and we use 
an A* search in each block which is similar to the 
isolated word recognition algorithm except inso- 
far as word boundaries are not known in advance. 
As in the isolated word case, we construct an 
admissible heuristic by means of an initial Viterbi 
search through a graph which imposes triphone 
phonotactic constraints on phone strings. The A* 
search generates a list of theories (partial phone- 
mic transcriptions together with word histories) 
for the speech data up to the end of the block 1 
As soon as the list of theories for the current 
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block has been obtained, the block is swapped 
out of memory and the search of the next block 
begins using this list to initialize the stack. 

This list of theories plays the same role as the 
beam used in a time synchronous Viterbi search. 
The Markov property of the trigram language 
model allows us to merge theories that have 
identical recent pasts but different remote pasts. 
(The stack decoder described by Paul (1991) also 
takes advantage of this fact.) When this merging 
is carried out, the number of theories that have to 
be generated at the end of each block (the "beam 
width") can be held fixed without running the 
risk of losing the optimal theory. In order to 
pursue the search in subsequent blocks, the only 
information needed concerns the recent pasts of 
these theories. By logging the information con- 
cerning the remote pasts to disk we are able to 
ensure that the memory required to recognize a 
file is independent  of its length (instead of in- 
creasing exponentially with the length of the file 
as would be necessary without merging and block 
processing). 

Finally, by tracing back the highest scoring 
theory on the beam after the last block has been 
processed, we obtain the recognition hypothesis 
which best accounts for all of the data in the file. 
The recognition algorithm can therefore be 
viewed globally as a beam search and locally as 
an A* search. 

The experiments reported here have been con- 
ducted using context-independent phoneme mod- 
els and allophone models (Bahl et al., 1991) de- 
fined by contexts which do not extend across 
word boundaries. Although the search algorithm 
can be extended to accommodate cross-word allo- 
phone models fairly easily, our experience leads 
us to believe that if the number of allophone 
models is large (say several thousand), then con- 
siderations of efficiency will require a two-pass 

approach in which detailed allophone models are 
not used in searching but only in rescoring hy- 
potheses returned by the search. 

3. Searching a block 

Suppose we are given a block of data [T 1, T 2] 
(the unit of time is the frame and the frame 
advance is 10 ms). We search the data in the 
block using a stack decoder which proceeds as 
follows. At each iteration of the search, there is a 
sorted list (or "stack") of theories each with a 
heuristic score. This heuristic score is a combina- 
tion of two scores, one calculated in the forward 
direction and the other calculated in the back- 
ward direction. The forward score is the exact 
likelihood of the speech data accounted for by 
the theory (calculated using acoustic HMMs and 
the language model) and the backward score is an 
overestimate of the likelihood of the remaining 
data on the optimal extension of the theory per- 
mitted by the lexicon and the language model. 
The theory with the highest heuristic score is 
expanded, meaning that, for each of the one- 
phoneme extensions permitted by the lexicon, the 
heuristic score of the extended theory is calcu- 
lated and the extended theory is inserted into the 
stack at the appropriate position. This process is 
iterated until sufficiently many theories satisfying 
a suitable termination criterion have been gener- 
ated. 

We have to explain how the backward scores 
are calculated, what data structure used to repre- 
sent a theory, how the stack is initialized prior to 
searching the block, what criterion is used to 
determine when a theory is complete and, finally, 
how theories having identical recent pasts but 
different remote pasts can be merged so as to 
speed up the search. 

More precisely, each of the theories generated has the 
property that all of the hypothesized end times for the third- 
to-last phoneme in the partial phonemic transcription are 
beyond the end of the block. The partial phonemic transcrip- 
tion need not end at a word boundary. 

3.1. Calculating the backward scores 

Our strategy for calculating the backward 
scores is essentially the same as in the isolated 
word case, that is, we conduct an exhaustive 
search in the reverse time direction through a 
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phonetic graph which imposes triphone phono- 
tactic constraints on phoneme strings. This graph 
is specified as follows and is denoted by G*.  
(i) Nodes: there is one node for every possible 

diphone fg. 
(ii) Branches: for every legitimate triphone fgh 

(that is, a triphone that can be obtained by 
concatenating the phonemic transcriptions 
of words in the dictionary) there is a branch 
from the node corresponding to the diphone 
fg to the node corresponding to the diphone 
gh. 

(iii) Branch labels: if fgh is a legitimate triphone 
then the branch from the node fg to the 
node gh carries the label f .  

We construct a hidden Markov model M by 
replacing each of the branches in this graph by a 
phonetic HMM. A detailed construction which 
avoids the use of null-transitions and encodes 
each node in G* as a state in M is given in 
(Kenny et al., 1993a). 

The backward scores used in searching the 
block [T 1, T 2] are obtained by performing a 
Viterbi search through M in the reverse time 
direction, starting at time T 2 + A where A is a 
suitably chosen positive integer (the criterion used 
to choose A is given below). We have no a priori 
knowledge of what state in M is occupied at time 
T 2 + zl, so we initialize the backward recursion by 
setting equal to 1 the backward scores associated 
with each state in M at this time. 

This backward pass gives, for each node n in 
G* and each t i m e t = T  1 - 1  . . . . .  T 2 + A - l , t h e  
Viterbi score of the data in the interval [t + 1, 
T 2 + A] on the best path in G* which leaves n at 
time t and is subject to no constraints on the 
state in the model occupied at time T z + A. We 
denote this quantity by/3*(n) .  

Suppose we are given a partial phonemic tran- 
scription f l " ' ' f k "  Let n be the node in G* 
corresponding to the diphone f k - l f k  and for 
each time t, let at ( f l  • • • f k - z )  denote the Viterbi 
score of all of the data up to time t (starting from 
the beginning of the utterance) for the truncated 
transcription f l  " " " fk-a" It is reasonable to esti- 
mate the end time of the phoneme fk -2  as 
argmax t a t ( f l . .  "fk_2)flt*(n). This is because 
/3*(n) is the Viterbi score of the data in the 

interval [ t + l ,  T2+za] on the best path in G* 
which leaves n at time t and the graph G* is 
constructed in such a way that this path is con- 
strained to pass first through a branch labelled 
fk-1 and then through a branch labelled fk. 

In the case of clean speech and speaker-de- 
pendent models, this way of estimating end times 
turns out to be exact almost all of the time (the 
"2-phone lookahead property") but it is safer to 
hypothesize several end times (for instance by 
taking the five values of t for which ott(fl . . .  
fk_2)/3*(n) is largest). 

3.2. Partial recognition hypotheses 

A partial recognition hypothesis (or " theory")  
0 is a septuple (w, f ,  m, n, o-, {at}, S), where 
1. w = w I .. • w N is a word history; 
2. f = f l " " f k  is a partial phonemic transcrip- 

tion which may extend into a word following 
w N (but there are no complete words after w N 
in the partial transcription f ) ;  

3. m is a node in the lexical tree (Kenny et al., 
1993a) corresponding to the part f which 
extends beyond w N, if any; m is the root node 
of the lexical tree otherwise; 

4. n is the node in the graph G* which corre- 
sponds to the diphone f k - l f ~ ;  

5. tr is the current state of the trigram language 
model; there are three possibilities depending 
on whether the word following w u is predicted 
using a trigram distribution P(. [WN_lW,v), a 
bigram distribution P ( ' l w  s )  or a unigram dis- 
tribution P(- ); 

6. for each endpoint hypothesis t, a t is the 
Viterbi score of the data up to time t against 
the model for the truncated transcription f~ 

• " "  f -2; 

7. S is the heuristic score which is given by 

S = P ( w )  m a x a t ( f l  " ' f ~ _ 2 ) f l * ( n ) ,  
t 

where P(w) is the probability of the word 
string w calculated using the trigram language 
model. 
The reason why both w and f have to be 

specified is that different words may have the 
same transcription and different transcriptions 
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may correspond to the same word. Obviously it is 
redundant  to specify m, n and cr in addition to w 
and f but it is convenient to do so. 

A stack entry is said to be complete if all of its 
hypothesized endpoints are to the right of T 2. 
The parameter  A is determined empirically by 
the condition that the exact endpoint of a com- 
plete stack entry should always be included among 
the hypothesized endpoints. (Since it is not actu- 
ally possible because of memory limitations to 
carry around sufficient information with each 
theory to be able to generate its segmentation, we 
test this condition by verifying that the acoustic 
score of the global transcription found by the 
recognizer of the data in each file is the same as 
the score found by the training program when it 
is run with this transcription.) 

At the start of the search, the stack is initial- 
ized using the list of theories generated by 
searching the previous block (ending at time T1). 
Each of these has the property that all of its 
hypothesised endpoints are to the right of T1, so 
the speech data prior to the beginning of the 
current block is no longer needed. The search 
terminates when sufficiently many complete theo- 
ries have been generated at which point the next 
block is swapped into memory and a new search 
begins. 

The reader may have noticed that the forward 
and backward components of the score S are 
asymmetrical in that the forward component con- 
tains both a language model score and an acous- 
tic score, whereas the backward component con- 
tains only an acoustic score. The requirement for 
admissibility (Nilsson, 1982) of a forward-back- 
ward heuristic scoring function is that the back- 
ward score associated with a theory dominate the 
forward score of any permissible extension of the 
theory, and the tighter the estimate provided by 
the backward score the more efficient the search 
will be. 

To see that the admissibility condition is satis- 
fied by the scoring function we have specified, fix 
a theory (w, f ,  m, n, tr, {o~t} , S) and observe that 
(i) The graph G* allows for more freedom in 

extending partial transcriptions than do the 
lexicon and language model, so, for every 
time t the backward score /3*(n) dominates 

the acoustic score of the data starting at time 
t + 1 for any partial transcription that begins 
with f k -  1 fk" 

(ii) If W' is any word string that extends w, then 
P(w'[w) ~ 1 (since the language model is a 
discrete probability distribution). 

It follows that the combined acoustic and lan- 
guage model score of any extension of the theory 
is dominated by S, as required. 

The question naturally arises whether it is pos- 
sible to construct a tighter bound on language 
model scores than that given in (ii). It is easy to 
build a phone-level language model which could 
be incorporated into the calculation of the /3*'s 
(using, say, statistics of triphone occurences de- 
rived from the word-level language model statis- 
tics) but it is not obvious how such a phone-level 
language model could be used to estimate the 
language model score of extensions of a given 
word string in an A*-admissible way. For this 
reason, we decided not to use a phone-level lan- 
guage model in the calculation of the /3*'s, at 
least in our initial experiments. However, the 
question of whether to use such a phone level 
language model is probably worth looking into, 
since the issue of admissibility may not prove to 
be important in practice. Admissibility guarantees 
that when a stack decoder is being used to search 
a graph, then the first N complete paths to 
appear on the top of the stack are precisely the N 
best paths in the graph. With a heuristic that is 
inadmissible but still reasonably accurate, it may 
be necessary to wait until more than N complete 
paths have appeared on the top of the stack in 
order to be sure of capturing the N best com- 
plete paths, but this is not a practical issue if the 
search is capable of finding complete paths 
quickly. 

3.3. Merging 

The Markov property of the trigram language 
model enables us to merge theories that have 
identical recent pasts but different remote pasts. 
Specifically, suppose we have two theories 0 = (w, 
f ,  m, n, ~,  {at}, S) and 0 ' =  (w', f ' ,  m', n' ,  at', 
{a~}, S ' )  such that m = m', n = n'  and cr = ~r'. (In 
this case we will say that 0 and 0' are equivalent.) 
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The future extensions of both theories which best 
account for the data starting at any given time 
(subject to lexical and language model con- 
straints) will be identical. Thus if it happens that 
t is on the list of hypothesized endpoints for both 
theories and 

<e(w)at, 
then we can remove t from the hypothesis list for 
the second theory without running the risk of 
losing the optimal path. In practice, the condition 
n = n'  means that the list of hypothesized end- 
points for both theories will be the same (except 
in very rare cases). Furthermore,  if this inequality 
holds for one such t, then it is typically because 
the first theory gives a better  fit to the remote 
past than the second theory; hence it will usually 
be the case that if the inequality holds for one t, 
then it will hold for all t and the second theory 
can be pruned away completely. 

We can take advantage of this fact to speed up 
the A* search by maintaining a list of "merge 
buckets" consisting of all the equivalence classes 
of theories encountered in the course of the 
search. Associated with each equivalence class we 
have an array of forward scores {A t } which is 
updated throughout the search. For each t, A t is 
defined to be max 0 P ( w ) a t ,  where 0 extends 
over all theories (w, f ,  m, n, or, {at} , S) in the 
given equivalence class that have been encoun- 
tered so far (in the course of searching the cur- 
rent block). When a new theory 0' = (w', f ' ,  m', 
n' ,  or', {a~}, S ' )  in this equivalence class comes to 
be inserted into the stack, for each hypothesized 
endpoint t, we can test to see if the inequality 

e(w')a; <A, 
holds. If it does, then we can prune this endpoint 
hypothesis before entering the theory into the 
stack; if not, then A t is updated and the end- 
point hypothesis has to be retained. 

We have not been able to implement this 
scheme fully because of memory limitations. In 
practice,  we only invoke merging when a word 
boundary is hypothesized, so the only merge 
buckets generated in the course of the search are 
those which correspond to theories for which m 
is the root node of the lexical tree. (However, 

before starting the search we prune the list of 
hypotheses generated by searching the previous 
block by merging at arbitrary phoneme bound- 
aries and we use this pruned list to initialize the 
stack.) 

4. Experimental results 

The books on tape that we have been using for 
development purposes consist of three novels, 
namely White Fang, The Europeans and Washing- 
ton Square and three non-fiction works, namely 
Helen Keller's autobiography, and two collections 
of essays dealing with current affairs, namely 
Preferential Policies and All It Takes Is Guts. 

In the recognition experiments we used a dic- 
tionary of 60 000 words, containing an average of 
2.2 transcriptions per word, which was aug- 
mented to include all of the words all of the 
books. (About 1.5% of the words were missing in 
each case. The majority of the missing words 
were inflected forms of words already in the 
dictionary.) The language model used was a tri- 
gram language model trained on 60 000 000 words 
of newspaper text (Gupta et al., 1992a). As in our 
isolated-word recognition experiments we used 
this language model a "black box" without adapt- 
ing it to any of the test domains. 

The speech data was digitized at 16 kHz and 
the acoustic features used for our experiments 
consisted of a set of eight static and seven dy- 
namic mel-based cepstral coefficents (calculated 
every 10 ms). We trained context-indendent (CI) 
and context-dependent (CD) phonetic HMMs for 
each of the speakers using the algorithm de- 
scribed in the companion paper (Boulianne et al., 
1994). The context-independent models consisted 
of a collection of 41 mixture HMMs (one model 
per phoneme). The output distributions in each 
of the models were 25-component Gaussian mix- 
tures and they were associated with the transi- 
tions in the model rather than states. For each 
model, we used a single covariance matrix com- 
mon to all mixture components in all of the 
transitions in the model. The context-dependent 
models consisted of 137 mixture HMMs of the 
same type with covariance matrices tied among 
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Table 1 
Training and test set sizes and recognition results for six 
books 

Book (Sex) Training Test Accuracy Accuracy 
(CI) (CD) 

White Fang (M) 13,200 
Washington Square (F) 15,486 
The Europeans (F) 19,158 
Helen Keller (F) 19,811 
Preferential Policies (M) 21,938 
All It Takes is Guts (M) 19,311 

730 58% 68% 
586 75% 79% 
499 64% 69% 

1005 66% 71% 
696 70% 75% 
561 67% 71% 

the allophones of each phoneme. Allophone clus- 
tering was performed by means of a decision tree 
(Bahl et al., 1991) but no attempt was made to 
model cross-word effects. Our principal results 
are shown in Table 1. 

The second and third columns in this table 
give the training and test set sizes in words; the 
fourth and fifth columns give the recognition 
accuracies for experiments performed with con- 
text-independent (CI) and context-dependent 
(CD) HMMs. 

The accuracies were calculated using the for- 
mula 

1 
( N  - (Substitutions 

+ ½[Deletions + Insertions])) ,  

where N is the size of the test set. This way of 
evaluating the accuracy is unusual in that substi- 
tutions, deletions and insertions are not assigned 

l equal penalties. The reason for the factor of ~ is 
to ensure that the formula for evaluating the 
accuracy gives the same weight to a substitution 
as to a combination of a deletion plus an inser- 
tion. In the case of context-independent models, 
the substitution rate (averaged across all books) 
was 27.2%, the insertion rate was 5.9% and the 
deletion rate was 4.2%. In the case of context-de- 
pendent  models the rates were 23.4%, 5.7% and 
3.8%, respectively. 

As the table shows, our recognizer had the 
greatest difficulty with the novel White Fang (by 
Jack London). We suspect that this is partly due 
to the efforts of the speaker to render the di- 

alects of the different characters and to the fact 
that the language model is thrown off by the 
spelling conventions which the author uses to the 
same effect. (For instance, some characters say 
"mebbe"  rather than "maybe".)  In any case, a 
language model trained on newspaper data is 
bound to have difficulties with a novel whose 
hero is a wolf. The perplexity 2 of the White Fang 
data, as calculated with the newspaper language 
model, turns out to be 1,743 which is extremely 
high. (For comparison the perplexity of Washing- 
ton Square is 576 and the average perplexity of 
the test data used in our isolated word recogni- 
tion experiments is 670.) 

The results in Table 1 are the fruit of a long 
series of experiments. In the case of White Fang, 
the recognition rate on our very first experiment 
using context-independent models was 40%; 
screening the training data and smoothing the 
estimate of the covariance matrix of the silence 
model gave 52%; treating compound proper 
names such as White Fang, Lip Lip and Gray 
Beaver as single words rather than sequences of 
two words for the purpose of calculating language 
model scores increased the accuracy to 54%; some 
alignment errors made by the training algorithm 
were corrected by detecting long silences in a 
pre-processor, giving an accuracy of 58%; finally, 
context-dependent models increased the accuracy 
to 68%. 

An experiment which did not lead to improve- 
ments in recognition accuracy concerned the im- 
position of minimum duration constraints on 
phoneme durations. We found that the use of 
such constraints was very effective in isolated 
word recognition (Gupta et al., 1992b) and one of 

2 The test set perplexities P were calculated in the usual way, 
using the formula P = Pr(w I • • • Wm )- l /x ,  where w 1 .. • w N is 
the string of words in the test set. This way of calculating 
perplexities suffers from the disadvantage that the scoring 
mechanism for words not included in the training data for the 
language model is somewhat arbitrary. However, this fact 
does not seem to account for the very high perplexity of White 
Fang compared to Washington Square since the percentage of 
out-of-vocabulary words was 1.4% in the case of White Fang 
and 2.2% in the case of Washington Square. 



58 P. Kenny et al. / Speech Communication 14 (1994) 49-60 

the principal reasons for using point scores in our 
search strategy was to be able to impose such 
constraints in a computationally efficient way. 
However, the only advantage that we were able to 
get from using duration constraints in the contin- 
uous speech case was a slight reduction in the 
amount of computation. 

For the experiments reported in Table 1, the 
recognizer was configured as follows. In order to 
keep the size of the stack within reasonable 
bounds, we had to use a block advance of only 10 
frames (1 frame = 10 ms). The parameter A was 
set at 140 frames (but it turns out that we could 
have taken A to be 50 frames without incurring 
any penalty in accuracy). The maximum number 
of entries in the stack was set to 60000. 
(Whenever this figure was attained, the size of 
the stack was cut back to 30 000.) The number of 
theories passed from one block to the next was 
3000. Using context-independent models, the 
CPU time required to run the experiments on a 
HP 720 workstation was 120 times real time. With 
context-dependent models the CPU time needed 
increased to about 300 times real time. This in- 
crease is mostly due to the increased computation 
needed to evaluate the /3*'s. (But note that as 
mentioned above, this could have been substan- 
tially reduced by changing the parameter a which 
determines the overlap between successive 
blocks.) 

5. Future work 

We have reported the results of some pilot 
experiments on continuous speech recognition us- 
ing a 60 000-word vocabulary and a trigram lan- 
guage model. Obviously, these results are only 
significant insofar as they indicate the types of 
improvement that will be needed if speech recog- 
nition on this scale is to become a practical 
reality. Our results show that, contrary to the 
case of isolated word recognition, we cannot hope 
using current modelling methods to obtain high 
recognition accuracies with context-independent 
phoneme models and a universal, domain-inde- 
pendent language model. 

It is clear that we will have to greatly increase 
our allophone inventory. Given the size of the 
vocabulary, the robustness problem is obviously a 
major issue. (The number of triphones in the 
dictionary is about 17000; this number increases 
by a factor of about two when triphones spanning 
word boundaries are included.) We are experi- 
menting with an approach to generalized tri- 
phone modelling using multiple templates to score 
every possible triphone. These templates are con- 
text-dependent models where context is de- 
scribed specifying the values of phonetic features 
on the right and the left in varying degrees of 
precision. Included among the templates are con- 
text-independent models and triphone models (in 
the case where the triphone is observed in the 
training data) as well as a large number of inter- 
mediate models. 

In (Kenny et al., 1992) we described how an 
admissible heuristic for searching with allophone 
models could be calculated without changing the 
topology of the graph G*. However, we have 
decided not to pursue this since the evidence in 
favour of a two-pass approach to large-scale 
speech recognition problems now seems to be 
quite compelling (Schwartz et al., 1992). Accord- 
ingly, we are redesigning the search strategy so 
that in the first pass the data in a block is 
searched using a coarse set of allophone models 
to match surface form phonemic transcriptions 
and a coarse language model. This search (which 
is essentially the same as the algorithm reported 
here) generates a list of partial recognition hy- 
potheses for the data in the block, each hypothe- 
sis consisting of a short word string (possibly 
empty) together with a partial transcription of a 
word which extends beyond the end of the block. 
These hypotheses are rescored in the second pass 
using fine allophone models, a fine language 
model and a phonological component which 
checks the consistency of the surface form tran- 
scriptions hypothesized by the first pass. (In the 
new algorithm, the first pass treats surface form 
transcriptions of the words in each hypothesis as 
occurring in free variation; the second pass re- 
jects any hypothesis whose surface form tran- 
scription cannot be obtained by the application of 
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phonological rules to the base form transcriptions 
of the words in the hypothesis.) 

We have to resolve the question of whether a 
fast match ought to be incorporated into the 
search. The role of a fast match is to conduct a 
crude search of the entire lexical tree every time 
a word boundary is hypothesized; the algorithm 
we have presented can be viewed as maintaining 
several copies of the lexical tree in memory and 
abandoning the search of a given copy of the 
lexical tree whenever the heuristic indicates that 
it would be more promising to search another. 
This approach was motivated by the need to 
avoid the computational overhead of running a 
fast match to completion every time it is invoked, 
but the memory requirements are so great that 
we were constrained to work with a very small 
block advance. This problem will be alleviated by 
using a coarse language model in the first pass, 
but we are also experimenting with a very effec- 
tive and very fast approximate acoustic match 
which uses information extracted from searching 
a graph such as G*  to score partial transcriptions 
at a cost of a single floating point operation per 
phoneme (Kenny et al., 1993). In this approach 
all of the time alignment for the search is carried 
out in a pre-processing step. This enables us to 
use powerful graph search techniques (Nilsson, 
1982; Kenny et al., 1994) that have not previously 
been applied in speech recognition. 

Since we are incorporating a phonological 
component to convert base forms to surface forms 
and then scoring surface forms using context-de- 
pendent  allophone models, the search problem 
becomes quite complex even in the training phase 
(especially since we want to be able to handle 
unsegmented training files of arbitrary length). 
To deal with this, we are designing the recogni- 
tion search strategy so that it can accommodate 
an abstract language model; this enables us to 
perform the Viterbi alignment of the data in a 
training file by supplying a language model con- 
structed from the words in the training script. 

Finally, it is obvious that language model 
adaptation will make the recognition task we 
have set ourselves much easier. Preliminary re- 
sults in this direction are reported in (Zhao et al., 
1993). 
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