
ELSEVIER Speech Communication 14 (1994) 61-70

SPEECH
(3 3 ~

Books on tape as training data
for continuous speech recognition **

G. Boulianne *, P. Kenny, M. Lennig *, D. O'Shaughnessy, P. Mermelstein
lNRS-Tdl~communications, 16, place du Commerce, Verdun (lle-des-Soeurs), Quebec, Canada H3E 1146

(Received 25 January 1993; revised 20 August 1993)

Abstract

Training algorithms for natural speech recognition require very large amounts of transcribed speech data.
Commercially distributed books on tape constitute an abundant source of such data, but it is difficult to take
advantage of it using current training algorithms because of the requirement that the data be hand-segmented into
chunks that can be comfortably processed in memory. In order to address this problem we have developed a training
algorithm which is capable of handling unsegmented d lta files of arbitrary length; the computational requirements
of the algorithm are linear in the amount of data to be processed and the memory requirements are constant.

Zusammenfassung

Trainingsalgorithmen fiir Systeme zur Erkennung natiirlicher Sprache ben6tigen eine sehr grol3e Anzahl etiket-
tierter Daten. Eine unersch6pfliche Quelle fiir solche Daten sind leicht erh~iltliche, auf Tonb~inder aufgenommene
Bficher. Es ist jedoch schwierig, von dieser Datenquelle zu profitieren, da die herk6mmlichen Trainingsalgorithmen
nur dann benutzt werden k6nnen, wenn die Daten zuvor manuell in kleinere Teile segmentiert worden sind, um im
Speicher des Rechners verarbeitet werden zu k6nnen. Um dieses Problem zu 16sen, haben wir einen Trainingsalgo-
rithmus entwickelt, der unsegmentierte Daten arbitrarer L~inge verarbeiten kann. Die Anforderung an die Rechen-
leistung steigt linear im Verh~iltnis zu der Menge der Daten die Speicheranforderung konstant bleibt.

Rdsumd

Les algorithmes d'apprentissage pour la reconnaissance de la parole continue ont besoin dc tr~s grandes
quantit~s de donn~es sous forme de parole transcrite. Les livres sur cassette, disponibles commercialement,

* Corresponding author.
** This work was supported by the Natural Sciences and Engineering Research Council of Canada.
* Also with Bell-Northern Research, Montreal, Canada.

0167-6393/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0167-6393(93)E0079-B

62 G. Boulianne et al. / Speech Communication 14 (1994) 61-70

repr6sentent une source de telles donn6es, abondante mais difficile ?~ exploiter avec les algorithmes d'apprentissage
actuels, car ceux-ci exigent que les donn6es soient d'abord segment6es, ?~ la main, en blocs assez petits pour ~tre
trait6s en m6moire. Pour r6soudre ce probl6me, nous avons mis au point un algorithme d'apprentissage capable de
traiter des fichiers de donn6es de longueur arbitraire; les besoins en calculs de cet algorithme sont lin6airement
proportionnels ~ la longueur des donn6es et la quantit6 de m6moire requise est constante.

Key words: Hidden Markov model; Continuous speech recognition; Training algorithm; Speech segmentation;
Speech labeling; Viterbi decoding

I. Introduction

It is a truism to say that large vocabulary
continuous speech recognition applications re-
quire very large amounts of acoustic training data.
An indication of the amount of data needed can
be obtained by extracting some statistics from a
large dictionary. For instance, the Moby Pronun-
ciator contains transcriptions of 167000 words
and phrases (one transcription in each case). We
translated the transcriptions using a standard
phoneme inventory of 40 symbols and counted
the number of triphones that would have to be
modelled if this vocabulary were to be used in a
continuous speech recognizer. We found that
there were about 17000 within-word triphones
and about 51000 cross-word triphones (assuming
that words can appear in any order). This sug-
gests that tens or even hundreds of thousands of
words of training data will be needed to obtain
respectable recognition accuracies.

The current generation of speech processing
algorithms require that training utterances be
spoken in isolated-sentence mode so data collec-
tion is a very expensive operation.

Although books on tape constitute an abun-
dant source of natural speech data whose tran-
scriptions are readily available, they cannot be
used for training purposes without manual seg-
mentation of the data. Note that this is not simply
a matter of automatically identifying where pauses
occur in the training data since a pause may
appear between any two words in the training
text. Even the much simpler task of automatic
sentence detection in the text generates errors for
general purpose, large vocabulary English (Paul
and Baker, 1992). In this paper we will describe a
variant of the Viterbi algorithm that we have
developed to deal with this problem.

We have applied this algorithm to 6 readily
available books on tape. Around two hours of
speech (roughly 17000 words) from each book
were used for training purposes. The training
data was partitioned into files of 2 to 10 minutes
(so that they conveniently fall on chapter bound-
aries) although training has been done success-
fully on files of up to one hour of uninterrupted
speech. Recognition results on these books are
reported in (Kenny et al., 1992, 1993).

2. Searching with a sliding window

The major computational burden in training
phonetic hidden Markov models consists of find-
ing the Viterbi alignment of training data with a
hidden Markov model constructed from a train-
ing script in the following way. For each of the
words in the training script, a phonetic graph
(Kenny et al., 1993) is constructed with the prop-
erty that there is a 1-1 correspondence between
possible paths through the graph and phonetic
transcriptions of the word. Graph reduction can
be applied when branches are shared by phonetic
variants, but always preserving the 1-1 corre-
spondence property. Next a phonetic graph cor-
responding to the entire training script is con-
structed in such a way as to allow for the possibil-
ity that a speaker may choose to leave a pause
between any two successive words. Each of the
branches in this graph (except for null branches)
carries a phoneme label; the hidden Markov
model referred to above is constructed by replac-
ing each of the branches by the phonetic HMM
corresponding to the branch label. (An example
of this construction will be given later in Fig. 3.)

The most widely used method for aligning
speech data with such a hidden Markov model is

G. Boulianne et al. / Speech Communication 14 (1994) 61-70 63

the frame-synchronous Viterbi algorithm (Rabi-
ner, 1989). In a naive implementation, the com-
putational complexity of this algorithm is propor-
tional to the square of the utterance length. (The
size of the trellis is T × S, where T is the length
of the utterance and S the number of states in
the HMM; S is proportional to T.) In practice,
when the algorithm is applied iteratively in train-
ing, it is possible to use segmentation found on
each iteration to guide the alignment in the next
iteration so that the computational complexity is
linear in the utterance length. (This is the idea of
semi-relaxed training described in (Deng et al.,
1991), also described in (Pieraccini, 1991) as the
Viterbi piecewise alignment. An extension to the
multiple transcription case is described in Section
3.) However, since the final decision about the
optimality of a path through the model cannot be
made until all of the data has been processed, the
memory requirements of the algorithm (in both
cases) are proportional to the utterance length so
that the data has to be pre-segmented into chunks
of manageable size. The alignment algorithm that
we present in this paper has constant memory
requirements (independent of the utterance
length) and so it can handle utterances of unlim-
ited length.

In order to perform Viterbi alignments using a
constant amount of memory (independent of the
utterance length) it is necessary to make some
decisions concerning the optimality of partial
paths through the model before the data has
been processed in its entirety. This can be accom-
plished by a sliding window algorithm which can
be summarized as follows:

Starting with existing ancestor paths at time t,
prolong the paths up to time t + L by a Viterbi
search. At time t + L, choose a limited number N
of candidate paths; take these N candidate paths
as the ancestors for a new window starting at
time t + L and discard the others.

Here L is the window length. Pruning to a
constant number of candidates at each window
makes memory use constant (computation is still
proportional to the utterance length). Care has to
be taken in pruning candidate paths at window

boundaries since the algorithm will only find the
optimal path if it is always included in the candi-
date lists. This general procedure gives rise to a
number of variants according to the way the
candidate paths are chosen at the window bound-
aries.

One can choose the best path according to a
heuristic value computed from the scores. This is
in fact the algorithm of Kriouile et al. (1990).
This procedure is never optimal, since there is no
way to ensure that the globally optimal path will
be chosen at every window.

Another possibility is to prune those paths that
have a score which differs from that of the best
path by a preset threshold; this is the idea of a
beam search. (To be precise, what we are describ-
ing differs from the standard beam search (Lee,
1990) in that thresholding is applied only at win-
dow boundaries and not elsewhere.) Note that
although in principle this procedure is not opti-
mal, in practice a beam search can be made as
close as desired to optimality by using a large
enough threshold (Pieraccini et al., 1990).

Our previous experience with two-phone
lookahead (Kenny et al., 1993), suggests that look-
ing a few phones ahead in the utterance could
give valuable information about the optimality of
the current partial paths. The next section pre-
sents a new pruning rule using this kind of infor-
mation.

2.1. Looking ahead

In the field of digital communications, Viterbi
decoding decisions have often to be made before
a message has been received in its entirety. A
commonly used technique (Lee and Messer-
schmitt, 1988) is based on the observations that
1. the optimal path will be included among the

highest scoring paths at any given time (pro-
vided the beam threshold is sufficiently gener-
ous),

2. all of the highest scoring paths are descended
from a common ancestor in the not-too-re-
mote past.
The idea of a common ancestor or "immortal

node" was also introduced for speech recognition
in (Bridle et al., 1982). These observations sug-

64 G. Boulianne et al. / Speech Communication 14 (1994) 61-70

States
in

HMM

s
b

s
c

s a

Survivor path / Best
/ ,/path

lookahead B ~ Time

t t+L t+L+B

Fig. 1. Selection of survivor path by look-ahead.

gest the following pruning strategy, which reduces
to one the number of paths which are passed
from one window on to the next. Referring to
Fig. 1:
1. Initial conditions: Assume that after searching

the previous window (ending at time t) there is
one surviving path. In the figure, s a denotes
the state of the model which is occupied at
time t on this path.

2, Search: Extend the starting path (using the
Viterbi algorithm) into all partial paths ending
at time t + L +B . Record the partial path
having the best score at this time. In the
figure, this path is indicated by the solid line;
the state on this path which is occupied at
time t + L + B is denoted by s b and the state
occupied at time t + L is denoted by s c.

3. Survivor selection: Backtrack along the path
recorded in Step 2 to find its ancestor at time
t + L. This path is selected as the only survivor
path.

4. Loop: Set a new window beginning at time
t + L with the survivor as the starting path and
repeat the steps (in other words, set t = t + L,
sa = s c and go to Step 1).
For this lookahead rule to be optimal we only

require that the lookahead B be sufficiently large
that the best path and the overall optimal path
merge together at some time past t + L. In the
limit, when B is large enough so that the window
spans the entire data file, the search reduces to a
full Viterbi search. The search can be made as
close to optimal as desired by using a large B.

Experimental results will show that convergence
of the paths can be obtained for useful values of
L and B.

2.2. B l o c k Viterbi searching

Our approach to the alignment problem in
training and the search problem in recognition is
based on block Viterbi decoding (Kenny et al.,
1993) which computes a Viterbi segmentation di-
rectly from a phonetic graph without explicit ref-
erence to the underlying phonetic HMMs. Al-
though block Viterbi decoding is less efficient
than standard Viterbi decoding (by about a factor
of two), it has several attractive features. It can
model non-Markovian segment-level features
(such as constraints on phone durations) and it is
particularly simple to implement semi-relaxed
alignment constraints in this framework; further-
more, the
date any

(whereas
works if
HMMs).

block Viterbi algorithm can accommo-
method of scoring phone segments

the standard Viterbi algorithm only
phone segments are modelled with

2.2.1. The phone t i c trellis

Block Viterbi decoding uses a trellis built from
a phonetic graph (Kenny et al., 1993) rather than
an HMM. Nodes in the phonetic graph are joined
by branches and each branch carries a phone
label. Since there is a 1-1 correspondence be-
tween phonetic transcriptions and paths through
the graph, a block Viterbi search of a phonetic
graph yields a phonetic transcription together
with a segmentation (i.e., a specification of entry
and exit times for each of the phones in the
transcription). Although any type of segmental
model would be suitable to score the phone
branches, in the following we assume that HMMs
are used as underlying models. The search of the
phonetic graph does not yield the alignment of
the data with the internal states of the phonetic
HMMs.

Fig. 2 represents the trellis constructed from a
phonetic graph and acoustic observations made at
times t = 1 , T; the point (t, n) corresponds to
a time t and a node n of the phonetic graph.
Suppose that the nodes n and n' in the graph are

G. Boulianne et al. / Speech Communication 14 (1994) 61-70 65

Phonetic
graph
nodes

n '

L

i
t t' T

Fig. 2. Phonetic trellis for block Viterbi algorithm.

Time

joined by a branch carrying a phone label f . In
the trellis, there will be a branch joining (t , n)
and (t ' , n ') for each t ' in the interval [t + 1, T].
When using an HMM as the underlying model,
the scores associated with this branch will be the
Viterbi likelihoods of the data from time t + 1 to
time t ' calculated using the f model. We will
denote these likelihoods by V([t + 1, t']l f) and
refer to them as "point scores". For a given time
t, all of the point scores V([t + 1, t '] l f) (for
t < t'~< T) can be calculated by the standard
Viterbi algorithm on the HMM using a single
trellis, and duration constraints can be imposed
simply by setting V ([t + l , t '] l f) to zero for
certain values of t ' ; in the case of minimum and
maximum durations, for all t ' for which t ' - t is
less than the minimum duration or more than the
maximum duration. Some branches, such as null
branches, do not carry a phone label and have no
cost or models associated with them. Their point
scores are simply set to one for t ' in the interval
[t, T].

Just as in the case of the standard Viterbi
algorithm, the optimal path through the phonetic
trellis can be found by a breadth-first search of
the trellis (Kenny et al., 1993) and the entry and
exit times of each of the branches on the optimal
path give the Viterbi segmentation.

2.3. Block Viterbi decoding with lookahead pruning

The sliding window and lookahead principles
can be modified to accommodate the block

Viterbi algorithm in the following way (step num-
bers here mirror those of Section 2.1):
1. Initial conditions: Assume that after search-

ing the previous window (ending at time t)
there is only one surviving path in the pho-
netic trellis.

la. Precomputation: Compute point scores for all
phones in the inventory and for all times in
the interval [t, t + L + B].

2. Search: Extend the starting path by the block
Viterbi algorithm into all possible partial
paths ending at time t + L + B. Find the par-
tial path having the best score at time t + L
+ B .

3. Backtracking: Backtrack along the path found
in Step 2 until a trellis point (t ' , n ') is found
such that t ' ~< t + L. Truncate the path at (t ' ,
n') and discard all other paths.

4. Loop: repeat from Step la with a new win-
dow extending from t ' to t ' + L + B, starting
the search at the trellis point (t ' , n').

Note that, in this case, a phone boundary is
hypothesized at time t + L + B on all of the paths
found in Step 2. (Unlike the standard Viterbi
trellis, points in the phonetic trellis always corre-
spond to hypothetical phone boundaries.) Since
there is no reason why there should be a phone
boundary at this time on the optimal path, it may
appear that our lookahead procedure is no longer
correct. Recall however that the correctness of
the lookahead procedure only requires that the
highest scoring path at time t + L + B and the
optimal path coincide up to time t + L. Obvi-
ously, provided B is sufficiently large, this condi-
tion will continue to hold even if a phone bound-
ary is forced to occur at time t + L + B, so this is
not a problem in practice.

Similar considerations dictate a slight modifi-
cation to the backtracking procedure (Step 3).
Since there is no reason to believe that a phone
boundary should occur at time t + L, we have to
backtrack until the first phone boundary prior to
t + L is found. As a result, the window advance is
no longer deterministic. (The new window starts
at time t ' rather than time t + L.)

As mentioned in Section 2, a general sliding
window search admits many different types of
pruning at window boundaries. The particular

66 G. Boulianne et al. / Speech Communication 14 (1994) 61-70

type of pruning that we have chosen (looking
ahead and backtracking) is particularly suited to
block Viterbi decoding since it has the property
that only one partial path is passed from one
window to the next. Had we implemented the
usual beam search type of pruning, we would
have had to retain multiple hypotheses not only
at time t + L but at every time in a neighborhood
of t + L which is sufficiently big that it is guaran-
teed to contain a phone boundary on the optimal
path.

3. Semi-relaxed training

The sliding window block Viterbi search that
we have described can be used to perform a
Viterbi search of an arbitrary phonetic graph
using unsegmented data files of arbitrary length.
As such, it can be used either for training or
recognition. Our focus in this paper is on the
training problem (we actually use quite a differ-
ent approach in recognition (Kenny et al., 1992,
1993). Since training is an iterative procedure, it
is natural to use information obtained in each
iteration to guide the search in the following
iteration. This is the idea of semi-relaxed training
(Deng et al., 1991; Pieraccini, 1991; Boulianne et
al., 1992). In this section we show how this type of
information can be incorporated into our search
algorithm and report some experimental results
obtained when the algorithm was used in training
HMMs for continuous speech recognition appli-
cations.

3.1. Use of prior segmentation knowledge

Fig. 3 illustrates how a training script is used
to build a phonetic graph representing all the
possible ways of uttering the string of words in
the script. In this example the words uttered are
"The forces o f . . . " . Pronunciation graphs are
first constructed for the individual words using
the transcriptions in the dictionary; a limited
amount of graph reduction is performed. Note
that the words "the" and "forces" each have two
transcriptions. Optional silences between succes-
sive words are handled by means of the silence

= silence loop, optional

109 109 132 134 136 138 138 T m i n

113 113 184 186 188 190190 T m a x

. _ . u.._.x = ~ ~. S , Z ~ =

s t , z ~._~ -

1 89 107 109 109 109 113 130 141 156 161 163 163 163 190 199 201 213 Vmi n

1 a9 107 109113 113 113 130 141 156 161 190 190 190 190 199 213 213 T m a x

F i g . 3. M i n i m u m a n d m a x i m u m e n t r y t i m e s f o r n o d e s in

p h o n e t i c g r a p h .

loop. Since the block Viterbi algorithm incorpo-
rates maximum duration constraints on pho-
nemes, pauses have to be transcribed using strings
of silence phonemes of arbitrary length. This is
handled in the silence loop by associating a single
silence phoneme with the top and middle
branches; the bottom branch is a null branch (to
allow for the possibility that there may be no
pause in the utterance). Finally, the various com-
ponents of the pronunciation graph are inte-
grated using null branches (indicated by the label
" = "). (We did not attempt to implement phono-
logical rules applying across word boundaries.)

3.1.1. Node-time assignment
Suppose that on a particular training iteration

we are aligning a given window in the training file
with the corresponding pronunciation graph. In
the absence of any prior information, the part of
the trellis that has to be searched consists of all
trellis points (t, n), where t ranges over all times
in the window and n ranges over all nodes in the
graph. In order to reduce the portion of the
trellis that has to be searched we can argue as
follows.

Fix a node n. If, in the path through the graph
found on the preceding iteration, the node n was
visited at time t, then it is reasonable to say that,
on the current iteration, the node can only be
visited at some time in the interval [t - A, t + A]
(for some suitably chosen constant A). A problem
with this scheme as it stands is that the node n
may not have been visited on the preceding itera-
tion (because the phonetic transcription may

G. Boulianne et al. / Speech Communication 14 (1994) 61-70 67

change from one iteration to the next). In such a
case we can at least say that if n ' is any node in
the graph which precedes n and n' is visited at
time t ' in the preceding iteration, then, in the
current iteration, n cannot be visited prior to
time t ' - A. A somewhat tighter lower bound can
be obtained by taking account of the minimum
duration thresholds for the phone(s) on the
path(s) joining n and n'. An upper bound on the
times that n can be visited can be found in the
same way. Thus for nodes n that are not visited
on the preceding iteration we can assert that, on
the current iteration, they can only be visited at
times falling in an interval of the form [tmi n - A ,
tma x + A].

This type of node-time assignment (which inci-
dentally is used in critical path scheduling and
P ER T (Siddall, 1972) for completion times of
tasks in a project) is illustrated in Fig. 3. The
"bot tom" path through the graph was the path
found on the preceding iteration of training. For
nodes on this path (other than nodes in the
silence loops) tmi n and tma x coincide and their
common value is the visitation time on the pre-
ceding iteration; these times are indicated in the
lines marked Zmi n and Tma x situated under the
graph. For the nodes which are not visited on the
preceding-iteration, times are assigned based on
the assignments for nodes on the bottom path.

Once the node-time assignments have been
determined for each of the nodes in the phonetic
graph, it is a simple matter to determine which
nodes can be visited in the course of searching a
given window.

Fig. 4 indicates, for a data file which was not
among the training files used to estimate the
models, the subsets of the phonetic trellis ("un-
certainty regions") that have to be searched in
each window in order to find the optimal path.

The size of the uncertainty regions is con-
trolled by the parameter A whose value has to be
determined empirically so as to ensure that the
uncertainty regions are guaranteed to contain the
optimal path.

As well as limiting the portion of the phonetic
trellis that has to be searched, the node-time
assignment can also be used to reduce the point
score calculations in each window. Firstly there is

2500 p 1 i i i i i ~ i

ovtim~ v ~ ~
2000 Uncertainty window

;---..

. ,

: . . .~ ,

5O0

0
0 5 10 15 20 25 30 35 40 45 50

Time (seconds)

Fig. 4. Typical uncertainty regions obtained by node-time
assignment.

phone pruning: the point scores need only be
calculated for phones f with the property that
there is a branch in the phonetic graph carrying
the f label which joins two nodes both of which
can be visited in the course of the window. Sec-
ondly there is time pruning: in order to score such
a branch, the only point scores V([t + 1, t '] l f)
that are needed are those defined by times t and
t ' satisfying the conditions
1. t is among the times that the node n can be

visited,
2. t ' is among the times that the node n' can be

visited,
3. constraints on the duration of the f phone are

respected.

3.2. Experimental results

Data for our experiments consisted of 105
minutes of continuous speech uttered by a single
male speaker, taken from a commercially dis-
tributed book on tape. The speech rate was about
170 words/minute . The data was stored in twelve
files (2 or 3 files per chapter) and was sampled at
16 kHz and blocked into frames of 30 ms, spaced
10 ms apart. The first 8 MFCC coefficients (Davis
and Mermelstein, 1980) and their first difference
(Deng et al., 1991) were used to form one 15-di-
mensional vector for each frame (the loudness
coefficient C O was used only for the difference
coefficients).

The text of the book was read using an optical
character reader and manually verified to correct
for scanning errors (about 2%) and speaker er-

68 G. Boulianne et al. / Speech Communication 14 (1994) 61-70

rors (less than 1%). Phonetic graphs correspond-
ing to the training scripts were constructed using
a 60000-word pronunciation dictionary which
contains an average of 2.2 phonetic transcriptions
per word. Typically each training script was about
1100 words long; the corresponding phonetic trel-
lises had 14000 nodes and were 36000 frames
long.

A total of 139 context-dependent phone mod-
els were trained. Each of the models was a left-
to-right Gaussian mixture HMM having 25 mix-
ture components per transition and a single co-
variance matrix per phoneme. (That is, the co-
variance matrices associated with the mixture
components used to model the various allo-
phones of a given phoneme were tied.)

On each iteration of training, a phonetic tran-
scription and segmentation of the data in each
file was found using the sliding window block
Viterbi search. This search does not keep track of
the alignment of the individual frames with the
internal transitions of the phone models (memory
requirements would be greatly increased if it did).
These internal alignments are therefore calcu-
lated in a (relatively inexpensive) second pass
through the data and new models were generated
by the standard reestimation procedures.

The object of the experiments was to demon-
strate the validity of the lookahead procedure,
determine suitable values for window length L
and lookahead interval B, and estimate the com-
putational and memory requirements when the
sliding window block Viterbi search on each iter-
ation is implemented in such a way as to take
advantage of segmentation information extracted
from the preceding iteration.

3.2.1. Path convergence and lookahead interval
Fig. 5 is typical of what is observed when

backtracking the N best paths at the end of a
window. In this example, B is 4 sec and L is
made equal to zero to allow backtracking over
the entire interval from 0 to 4 sec. The 75 best
paths (at 4 sec) merge in a single path in less than
1.50 sec. Again the speech file used here had not
been seen during the training. This suggests that
the optimal path could merge with the best path
in less than 1 sec most of the time, i.e., that a

i i ~ i i i i i i

2 0 0 o p t i m a l p a t h - - -

75 best - -"
,~,'

150 , . - _t.~.~
r , t l -

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds)

F ig . 5. T r a c e s o f 75 b e s t s c o r i n g p a t h s a t w i n d o w e n d .

3.5

3

2.5

2

1.5

1

0.5

0
0

i i i i

' , S~n dam ~ ' -
*'. Unseen dam

" '""*'" '" ' i" '*, I ~.. i

0.2 0.4 0.6 0.8
Look ahead in seconds

F ig . 6. S e g m e n t e r r o r s as a f u n c t i o n o f l o o k a h e a d i n t e r v a l .

lookahead interval B of a second or less could
guarantee an optimal search.

An experiment was run to determine exactly
how large the lookahead interval B has to be for
optimality. Fig. 6 shows estimated errors in seg-
ment boundary location as a function of the
lookahead interval B, for speech data seen dur-
ing previous iterations of training training and for
speech that has never been seen before. The total
of window length (L) plus lookahead interval (B)
was kept constant at 4 sec, while lookahead inter-
val B was varied from 0.06 to 2.0 sec. There were
3786 and 3873 segments in the seen and unseen
speech data, respectively.

Errors were estimated by comparing with a
reference segmentation obtained with a 3 sec
lookahead interval. As pointed out in Section 2.1,
the search becomes optimal when a large enough
value of B is reached; we found no change in
segmentation for any B beyond 0.8 sec (up to 3
sec). Thus the 3 sec segmentation can be assumed

G. Boulianne et al. / Speech Communication 14 (1994) 61-70 69

to be optimal, and we considered differences
from this segmentation as errors. The figure shows
that using a lookahead interval of more than
about 0.8 sec is not necessary, even for speech
that has not been seen before.

The window length L is made as large as
permitted by computation and memory limits. In
practice, we use a length of 3 sec. The overhead
for one second lookahead then accounts for only
one-fourth of total processor and memory use.

3.2.2. Computation and memory requirements
For a typical speech file of 6 minutes, the

phonetic graph has about 14000 nodes and is
36 000 frames long. In order to guarantee that the
uncertainty regions always contain the optimal
path we set the parameter a to be 2 sec. (This is
more generous than is really necessary. After a
few iterations of training have been performed,
large shifts in segment boundaries between suc-
cessive iterations are rarely observed.) With this
value of A, the number of nodes that can be
visited in an interval of length 4 sec (recall that
we took L to be 3 sec and B to be 1 see) is about
300.

We found that under these conditions, phone
pruning reduced the point score calculations for
each window by about a factor of 2 and that time
pruning reduced the calculation of the remaining
point scores by another factor of 2. The total
computation for the sliding window block Viterbi
search was about 15 times real time on an HP
Apollo 9000/720 workstation. A full training iter-
ation took an additional 0.5 times real time (to
perform the within-model Viterbi alignments and
the reestimation procedures).

Under the same conditions, the memory re-
quired to search a window is about 10 Mbytes;
the trellis occupies about a third of this and the
precomputed point scores occupy the remainder.

4. Conclusion

Extending the sliding window idea, we devel-
oped a training algorithm requiring a fixed
amount of memory, that can be used on unseg-
mented, unlimited length speech utterances. In

our experiments selection of a single survivor
path could be made optimal by looking at its
future less than 1 sec ahead. Retaining only one
survivor at each window is particularly efficient
when performing a block Viterbi search which
incorporates phoneme duration constraints in a
natural way, as well as segmentation information
derived from prior training iterations. This algo-
rithm does not require training utterances to be
spoken in isolated-sentence mode, so it makes
available abundant sources of natural speech data.
We were able to train HMM models from 6
books on tape partitioned into speech files of 6
minutes on average, varying from 2 to 57 minutes.

5. References

G. Boulianne, P. Kenny, M. Lennig, D. O'Shaughnessy and P.
Mermelstein (1992), "HMM training on unconstrained
speech for large vocabulary, continuous speech recogni-
tion", Proc. ICSLP, Banff, October 1992, pp. 229-232.

J.S. Bridle, M.D. Brown and R.M. Chamberlain (1982), "An
algorithm for connected word recognition", Proc. IEEE
Internat. Conf. Acoust. Speech Signal Process., Paris, May
1982, pp. 899-902.

S.B. Davis and P. Mermelstein (1980), "Comparison of para-
metric representations for monosyllabic word recognition
in continuously spoken sentences", IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-28, pp. 357-366.

L. Deng, P. Kenny, M. Lennig, V. Gupta, F. Seitz and P.
Mermelstein (1991), "Phonemic hidden Markov models
with continuous mixture output densities for large vocabu-
lary word recognition", IEEE Trans. Signal Processing,
Vol. 39, pp. 1677-1681.

P. Kenny, R. Hollan, G. Boulianne, H. Garudadri, Y.-M.
Cheng, M. Lennig and D. O'Shaughnessy (1992), "Experi-
ments in continuous speech recognition with a 60000 word
vocabulary", Proc. ICSLP, Banff, October 1992, pp. 225-
228.

P. Kenny, R. Hollan, V. Gupta, M. Lennig, P. Mermelstein
and D. O'Shaughnessy (1993) "A* - Admissible heuristics
for rapid lexical access", IEEE Trans. Speech and Audio
Processing, Vol. 1, No. 1, pp. 49-58.

P. Kenny, G. Boulianne, H. Garudadri, S. Trudelle, R. Hot-
lan, M. Lennig and D. O'Shaughnessy (1994), "Experi-
ments in continuous speech recognition using books on
tape", Speech Communication, Vol. 14, No. 1, February
1994, pp. 49-60.

A. Kriouile, J.F. Mari and J.P. Haton (1990), "L'algorithme
VITERBI-BLOC pour la reconnaissance de la parole
continue", xI.qll~mes Journdes d'dtude sur la Parole, pp.
207-211.

70 G. Boulianne et al. / Speech Communication 14 (1994) 61-70

E.A. Lee and D.G. Messerschmitt (1988), Digital Communica-
tion (Kluwer Academic Publishers, Boston).

K.F. Lee (1990), "Context-dependent phonetic hidden Markov
models for speaker-independent continuous speech recog-
nition", IEEE Trans. Acoust. Speech Signal Process., Vol.
38, No. 4, pp. 599-609.

D.B. Paul and J.M. Baker (1992), "The design for the Wall
Street Journal-based CSR corpus", Proc. DARPA Speech
and Natural Language Workshop, February 1992, pp. 357-
362.

R. Pieraccini (1991), "Speaker independent recognition of
Italian telephone speech with mixture density hidden

Markov models", Speech Communication, Vol. 10, No. 2,
pp. 105-115.

R. Pieraccini, C.H. Lee, E. Giachin and L.R. Rabiner (1990),
"Implementation aspects of large vocabulary recognition
based on intraword and interword phonetic units", Proc.
DARPA Speech and Natural Language Workshop, June
1990, pp. 311-318.

L.R. Rabiner (1989), "A tutorial on hidden Markov models
and selected applications in speech recognition", Proc.
IEEE, Vol. 77, No. 2, pp. 257-286.

J.N. Siddall (1972), Analytical Decision-making in Engineering
Design (Prentice-Hall, Englewood Cliffs, NJ).

