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Abstract 

Training algorithms for natural speech recognition require very large amounts of transcribed speech data. 
Commercially distributed books on tape constitute an abundant source of such data, but it is difficult to take 
advantage of it using current training algorithms because of the requirement that the data be hand-segmented into 
chunks that can be comfortably processed in memory. In order to address this problem we have developed a training 
algorithm which is capable of handling unsegmented d lta files of arbitrary length; the computational requirements 
of the algorithm are linear in the amount of data to be processed and the memory requirements are constant. 

Zusammenfassung 

Trainingsalgorithmen fiir Systeme zur Erkennung natiirlicher Sprache ben6tigen eine sehr grol3e Anzahl etiket- 
tierter Daten. Eine unersch6pfliche Quelle fiir solche Daten sind leicht erh~iltliche, auf Tonb~inder aufgenommene 
Bficher. Es ist jedoch schwierig, von dieser Datenquelle zu profitieren, da die herk6mmlichen Trainingsalgorithmen 
nur dann benutzt werden k6nnen, wenn die Daten zuvor manuell in kleinere Teile segmentiert worden sind, um im 
Speicher des Rechners verarbeitet werden zu k6nnen. Um dieses Problem zu 16sen, haben wir einen Trainingsalgo- 
rithmus entwickelt, der unsegmentierte Daten arbitrarer L~inge verarbeiten kann. Die Anforderung an die Rechen- 
leistung steigt linear im Verh~iltnis zu der Menge der Daten die Speicheranforderung konstant bleibt. 

Rdsumd 

Les algorithmes d'apprentissage pour la reconnaissance de la parole continue ont besoin dc tr~s grandes 
quantit~s de donn~es sous forme de parole transcrite. Les livres sur cassette, disponibles commercialement, 
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repr6sentent une source de telles donn6es, abondante mais difficile ?~ exploiter avec les algorithmes d'apprentissage 
actuels, car ceux-ci exigent que les donn6es soient d'abord segment6es, ?~ la main, en blocs assez petits pour ~tre 
trait6s en m6moire. Pour r6soudre ce probl6me, nous avons mis au point un algorithme d'apprentissage capable de 
traiter des fichiers de donn6es de longueur arbitraire; les besoins en calculs de cet algorithme sont lin6airement 
proportionnels ~ la longueur des donn6es et la quantit6 de m6moire requise est constante. 

Key words: Hidden Markov model; Continuous speech recognition; Training algorithm; Speech segmentation; 
Speech labeling; Viterbi decoding 

I. Introduction 

It is a truism to say that large vocabulary 
continuous speech recognition applications re- 
quire very large amounts of acoustic training data. 
An indication of the amount of data needed can 
be obtained by extracting some statistics from a 
large dictionary. For instance, the Moby Pronun- 
ciator contains transcriptions of 167000 words 
and phrases (one transcription in each case). We 
translated the transcriptions using a standard 
phoneme inventory of 40 symbols and counted 
the number of triphones that would have to be 
modelled if this vocabulary were to be used in a 
continuous speech recognizer. We found that 
there were about 17000 within-word triphones 
and about 51000 cross-word triphones (assuming 
that words can appear in any order). This sug- 
gests that tens or even hundreds of thousands of 
words of training data will be needed to obtain 
respectable recognition accuracies. 

The current generation of speech processing 
algorithms require that training utterances be 
spoken in isolated-sentence mode so data collec- 
tion is a very expensive operation. 

Although books on tape constitute an abun- 
dant source of natural speech data whose tran- 
scriptions are readily available, they cannot be 
used for training purposes without manual seg- 
mentation of the data. Note that this is not simply 
a matter  of automatically identifying where pauses 
occur in the training data since a pause may 
appear between any two words in the training 
text. Even the much simpler task of automatic 
sentence detection in the text generates errors for 
general purpose, large vocabulary English (Paul 
and Baker, 1992). In this paper we will describe a 
variant of the Viterbi algorithm that we have 
developed to deal with this problem. 

We have applied this algorithm to 6 readily 
available books on tape. Around two hours of 
speech (roughly 17000 words) from each book 
were used for training purposes. The training 
data was partitioned into files of 2 to 10 minutes 
(so that they conveniently fall on chapter bound- 
aries) although training has been done success- 
fully on files of up to one hour of uninterrupted 
speech. Recognition results on these books are 
reported in (Kenny et al., 1992, 1993). 

2. Searching with a sliding window 

The major computational burden in training 
phonetic hidden Markov models consists of find- 
ing the Viterbi alignment of training data with a 
hidden Markov model constructed from a train- 
ing script in the following way. For each of the 
words in the training script, a phonetic graph 
(Kenny et al., 1993) is constructed with the prop- 
erty that there is a 1-1 correspondence between 
possible paths through the graph and phonetic 
transcriptions of the word. Graph reduction can 
be applied when branches are shared by phonetic 
variants, but always preserving the 1-1 corre- 
spondence property. Next a phonetic graph cor- 
responding to the entire training script is con- 
structed in such a way as to allow for the possibil- 
ity that a speaker may choose to leave a pause 
between any two successive words. Each of the 
branches in this graph (except for null branches) 
carries a phoneme label; the hidden Markov 
model referred to above is constructed by replac- 
ing each of the branches by the phonetic HMM 
corresponding to the branch label. (An example 
of this construction will be given later in Fig. 3.) 

The most widely used method for aligning 
speech data with such a hidden Markov model is 
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the frame-synchronous Viterbi algorithm (Rabi- 
ner, 1989). In a naive implementation, the com- 
putational complexity of this algorithm is propor- 
tional to the square of the utterance length. (The 
size of the trellis is T × S, where T is the length 
of the utterance and S the number of states in 
the HMM; S is proportional to T.) In practice, 
when the algorithm is applied iteratively in train- 
ing, it is possible to use segmentation found on 
each iteration to guide the alignment in the next 
iteration so that the computational complexity is 
linear in the utterance length. (This is the idea of 
semi-relaxed training described in (Deng et al., 
1991), also described in (Pieraccini, 1991) as the 
Viterbi piecewise alignment. An extension to the 
multiple transcription case is described in Section 
3.) However, since the final decision about the 
optimality of a path through the model cannot be 
made until all of the data has been processed, the 
memory requirements of the algorithm (in both 
cases) are proportional to the utterance length so 
that the data has to be pre-segmented into chunks 
of manageable size. The alignment algorithm that 
we present in this paper has constant memory 
requirements (independent of the utterance 
length) and so it can handle utterances of unlim- 
ited length. 

In order to perform Viterbi alignments using a 
constant amount of memory (independent of the 
utterance length) it is necessary to make some 
decisions concerning the optimality of partial 
paths through the model before the data has 
been processed in its entirety. This can be accom- 
plished by a sliding window algorithm which can 
be summarized as follows: 

Starting with existing ancestor paths at time t, 
prolong the paths up to time t + L by a Viterbi 
search. At time t + L, choose a limited number N 
of candidate paths; take these N candidate paths 
as the ancestors for a new window starting at 
time t + L and discard the others. 

Here L is the window length. Pruning to a 
constant number of candidates at each window 
makes memory use constant (computation is still 
proportional to the utterance length). Care has to 
be taken in pruning candidate paths at window 

boundaries since the algorithm will only find the 
optimal path if it is always included in the candi- 
date lists. This general procedure gives rise to a 
number of variants according to the way the 
candidate paths are chosen at the window bound- 
aries. 

One can choose the best path according to a 
heuristic value computed from the scores. This is 
in fact the algorithm of Kriouile et al. (1990). 
This procedure is never optimal, since there is no 
way to ensure that the globally optimal path will 
be chosen at every window. 

Another possibility is to prune those paths that 
have a score which differs from that of the best 
path by a preset threshold; this is the idea of a 
beam search. (To be precise, what we are describ- 
ing differs from the standard beam search (Lee, 
1990) in that thresholding is applied only at win- 
dow boundaries and not elsewhere.) Note that 
although in principle this procedure is not opti- 
mal, in practice a beam search can be made as 
close as desired to optimality by using a large 
enough threshold (Pieraccini et al., 1990). 

Our previous experience with two-phone 
lookahead (Kenny et al., 1993), suggests that look- 
ing a few phones ahead in the utterance could 
give valuable information about the optimality of 
the current partial paths. The next section pre- 
sents a new pruning rule using this kind of infor- 
mation. 

2.1. Looking ahead 

In the field of digital communications, Viterbi 
decoding decisions have often to be made before 
a message has been received in its entirety. A 
commonly used technique (Lee and Messer- 
schmitt, 1988) is based on the observations that 
1. the optimal path will be included among the 

highest scoring paths at any given time (pro- 
vided the beam threshold is sufficiently gener- 
ous), 

2. all of the highest scoring paths are descended 
from a common ancestor in the not-too-re- 
mote past. 
The idea of a common ancestor or "immortal 

node" was also introduced for speech recognition 
in (Bridle et al., 1982). These observations sug- 
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Fig. 1. Selection of survivor path by look-ahead. 

gest the following pruning strategy, which reduces 
to one the number of paths which are passed 
from one window on to the next. Referring to 
Fig. 1: 
1. Initial conditions: Assume that after searching 

the previous window (ending at time t) there is 
one surviving path. In the figure, s a denotes 
the state of the model which is occupied at 
time t on this path. 

2, Search: Extend the starting path (using the 
Viterbi algorithm) into all partial paths ending 
at time t + L  +B .  Record the partial path 
having the best score at this time. In the 
figure, this path is indicated by the solid line; 
the state on this path which is occupied at 
time t + L + B is denoted by s b and the state 
occupied at time t + L is denoted by s c. 

3. Survivor selection: Backtrack along the path 
recorded in Step 2 to find its ancestor at time 
t + L. This path is selected as the only survivor 
path. 

4. Loop: Set a new window beginning at time 
t + L with the survivor as the starting path and 
repeat the steps (in other words, set t = t + L, 
sa = s c and go to Step 1). 
For this lookahead rule to be optimal we only 

require that the lookahead B be sufficiently large 
that the best path and the overall optimal path 
merge together at some time past t + L. In the 
limit, when B is large enough so that the window 
spans the entire data file, the search reduces to a 
full Viterbi search. The search can be made as 
close to optimal as desired by using a large B. 

Experimental results will show that convergence 
of the paths can be obtained for useful values of 
L and B. 

2.2. B l o c k  Viterbi searching 

Our approach to the alignment problem in 
training and the search problem in recognition is 
based on block Viterbi decoding (Kenny et al., 
1993) which computes a Viterbi segmentation di- 
rectly from a phonetic graph without explicit ref- 
erence to the underlying phonetic HMMs. Al- 
though block Viterbi decoding is less efficient 
than standard Viterbi decoding (by about a factor 
of two), it has several attractive features. It can 
model non-Markovian segment-level features 
(such as constraints on phone durations) and it is 
particularly simple to implement semi-relaxed 
alignment constraints in this framework; further- 
more, the 
date any 

(whereas 
works if 
HMMs). 

block Viterbi algorithm can accommo- 
method of scoring phone segments 

the standard Viterbi algorithm only 
phone segments are modelled with 

2.2.1. The phone t i c  trellis 

Block Viterbi decoding uses a trellis built from 
a phonetic graph (Kenny et al., 1993) rather than 
an HMM. Nodes  in the phonetic graph are joined 
by branches  and each branch carries a phone 
label. Since there is a 1-1 correspondence be- 
tween phonetic transcriptions and paths through 
the graph, a block Viterbi search of a phonetic 
graph yields a phonetic transcription together 
with a segmentation (i.e., a specification of entry 
and exit times for each of the phones in the 
transcription). Although any type of segmental 
model would be suitable to score the phone 
branches, in the following we assume that HMMs 
are used as underlying models. The search of the 
phonetic graph does not yield the alignment of 
the data with the internal states of the phonetic 
HMMs. 

Fig. 2 represents the trellis constructed from a 
phonetic graph and acoustic observations made at 
times t = 1 . . . .  , T; the point (t, n) corresponds to 
a time t and a node n of the phonetic graph. 
Suppose that the nodes n and n'  in the graph are 
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Fig. 2. Phonetic trellis for block Viterbi algorithm. 

Time 

joined by a branch carrying a phone label f .  In 
the trellis, there will be a branch joining (t ,  n) 
and ( t ' ,  n ' )  for each t '  in the interval [t + 1, T]. 
When using an HMM as the underlying model, 
the scores associated with this branch will be the 
Viterbi likelihoods of the data from time t + 1 to 
time t '  calculated using the f model. We will 
denote these likelihoods by V([t + 1, t']l f )  and 
refer to them as "point  scores". For a given time 
t, all of the point scores V([t + 1, t ' ] l f )  (for 
t < t'~< T)  can be calculated by the standard 
Viterbi algorithm on the HMM using a single 
trellis, and duration constraints can be imposed 
simply by setting V ( [ t + l ,  t ' ] l f )  to zero for 
certain values of t ' ;  in the case of minimum and 
maximum durations, for all t '  for which t '  - t is 
less than the minimum duration or more than the 
maximum duration. Some branches, such as null 
branches, do not carry a phone label and have no 
cost or models associated with them. Their  point 
scores are simply set to one for t '  in the interval 
[t, T]. 

Just as in the case of the standard Viterbi 
algorithm, the optimal path through the phonetic 
trellis can be found by a breadth-first search of 
the trellis (Kenny et al., 1993) and the entry and 
exit times of each of the branches on the optimal 
path give the Viterbi segmentation. 

2.3. Block Viterbi decoding with lookahead pruning 

The sliding window and lookahead principles 
can be modified to accommodate the block 

Viterbi algorithm in the following way (step num- 
bers here mirror those of Section 2.1): 
1. Initial conditions: Assume that after search- 

ing the previous window (ending at time t) 
there is only one surviving path in the pho- 
netic trellis. 

la. Precomputation: Compute point scores for all 
phones in the inventory and for all times in 
the interval [t, t + L + B]. 

2. Search: Extend the starting path by the block 
Viterbi algorithm into all possible partial 
paths ending at time t + L + B. Find the par- 
tial path having the best score at time t + L 
+ B .  

3. Backtracking: Backtrack along the path found 
in Step 2 until a trellis point ( t ' ,  n ' )  is found 
such that t '  ~< t + L. Truncate the path at ( t ' ,  
n')  and discard all other paths. 

4. Loop: repeat from Step la  with a new win- 
dow extending from t '  to t '  + L + B, starting 
the search at the trellis point ( t ' ,  n'). 

Note that, in this case, a phone boundary is 
hypothesized at time t + L + B on all of the paths 
found in Step 2. (Unlike the standard Viterbi 
trellis, points in the phonetic trellis always corre- 
spond to hypothetical phone boundaries.) Since 
there is no reason why there should be a phone 
boundary at this time on the optimal path, it may 
appear that our lookahead procedure is no longer 
correct. Recall however that the correctness of 
the lookahead procedure only requires that the 
highest scoring path at time t + L + B and the 
optimal path coincide up to time t + L. Obvi- 
ously, provided B is sufficiently large, this condi- 
tion will continue to hold even if a phone bound- 
ary is forced to occur at time t + L + B, so this is 
not a problem in practice. 

Similar considerations dictate a slight modifi- 
cation to the backtracking procedure (Step 3). 
Since there is no reason to believe that a phone 
boundary should occur at time t + L, we have to 
backtrack until the first phone boundary prior to 
t + L is found. As a result, the window advance is 
no longer deterministic. (The new window starts 
at time t '  rather than time t + L.) 

As mentioned in Section 2, a general sliding 
window search admits many different types of 
pruning at window boundaries. The particular 
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type of pruning that we have chosen (looking 
ahead and backtracking) is particularly suited to 
block Viterbi decoding since it has the property 
that only one partial path is passed from one 
window to the next. Had we implemented the 
usual beam search type of pruning, we would 
have had to retain multiple hypotheses not only 
at time t + L but at every time in a neighborhood 
of t + L which is sufficiently big that it is guaran- 
teed to contain a phone boundary on the optimal 
path. 

3. Semi-relaxed training 

The sliding window block Viterbi search that 
we have described can be used to perform a 
Viterbi search of an arbitrary phonetic graph 
using unsegmented data files of arbitrary length. 
As such, it can be used either for training or 
recognition. Our focus in this paper is on the 
training problem (we actually use quite a differ- 
ent approach in recognition (Kenny et al., 1992, 
1993). Since training is an iterative procedure, it 
is natural to use information obtained in each 
iteration to guide the search in the following 
iteration. This is the idea of semi-relaxed training 
(Deng et al., 1991; Pieraccini, 1991; Boulianne et 
al., 1992). In this section we show how this type of 
information can be incorporated into our search 
algorithm and report some experimental results 
obtained when the algorithm was used in training 
HMMs for continuous speech recognition appli- 
cations. 

3.1. Use of prior segmentation knowledge 

Fig. 3 illustrates how a training script is used 
to build a phonetic graph representing all the 
possible ways of uttering the string of words in 
the script. In this example the words uttered are 
"The forces o f . . . " .  Pronunciation graphs are 
first constructed for the individual words using 
the transcriptions in the dictionary; a limited 
amount of graph reduction is performed. Note 
that the words "the" and "forces" each have two 
transcriptions. Optional silences between succes- 
sive words are handled by means of the silence 

= silence loop, optional 

109 109 132 134 136 138 138 T m i  n 

113 113 184 186 188 190190 T m a  x 

. _ .  u.._.x = ~ ~. S , Z ~ = 

s t ,  z ~._~ - 

1 89 107 109 109 109 113 130 141 156 161 163 163 163 190 199 201 213 Vmi n 

1 a9 107 109113 113 113 130 141 156 161 190 190 190 190 199 213 213 T m a  x 

F i g .  3. M i n i m u m  a n d  m a x i m u m  e n t r y  t i m e s  f o r  n o d e s  in 

p h o n e t i c  g r a p h .  

loop. Since the block Viterbi algorithm incorpo- 
rates maximum duration constraints on pho- 
nemes, pauses have to be transcribed using strings 
of silence phonemes of arbitrary length. This is 
handled in the silence loop by associating a single 
silence phoneme with the top and middle 
branches; the bottom branch is a null branch (to 
allow for the possibility that there may be no 
pause in the utterance). Finally, the various com- 
ponents of the pronunciation graph are inte- 
grated using null branches (indicated by the label 
" =  "). (We did not attempt to implement phono- 
logical rules applying across word boundaries.) 

3.1.1. Node-time assignment 
Suppose that on a particular training iteration 

we are aligning a given window in the training file 
with the corresponding pronunciation graph. In 
the absence of any prior information, the part of 
the trellis that has to be searched consists of all 
trellis points (t, n), where t ranges over all times 
in the window and n ranges over all nodes in the 
graph. In order to reduce the portion of the 
trellis that has to be searched we can argue as 
follows. 

Fix a node n. If, in the path through the graph 
found on the preceding iteration, the node n was 
visited at time t, then it is reasonable to say that, 
on the current iteration, the node can only be 
visited at some time in the interval [ t -  A, t + A] 
(for some suitably chosen constant A). A problem 
with this scheme as it stands is that the node n 
may not have been visited on the preceding itera- 
tion (because the phonetic transcription may 



G. Boulianne et al. / Speech Communication 14 (1994) 61-70 67 

change from one iteration to the next). In such a 
case we can at least say that if n '  is any node in 
the graph which precedes n and n'  is visited at 
time t '  in the preceding iteration, then, in the 
current iteration, n cannot be visited prior to 
time t '  - A. A somewhat tighter lower bound can 
be obtained by taking account of the minimum 
duration thresholds for the phone(s) on the 
path(s) joining n and n'. An upper bound on the 
times that n can be visited can be found in the 
same way. Thus for nodes n that are not visited 
on the preceding iteration we can assert that, on 
the current iteration, they can only be visited at 
times falling in an interval of the form [tmi n - A ,  
tma x + A]. 

This type of node-time assignment (which inci- 
dentally is used in critical path scheduling and 
P ER T (Siddall, 1972) for completion times of 
tasks in a project) is illustrated in Fig. 3. The 
"bot tom" path through the graph was the path 
found on the preceding iteration of training. For 
nodes on this path (other than nodes in the 
silence loops) tmi n and tma x coincide and their 
common value is the visitation time on the pre- 
ceding iteration; these times are indicated in the 
lines marked Zmi n and Tma x situated under  the 
graph. For the nodes which are not visited on the 
preceding-iteration, times are assigned based on 
the assignments for nodes on the bottom path. 

Once the node-time assignments have been 
determined for each of the nodes in the phonetic 
graph, it is a simple matter  to determine which 
nodes can be visited in the course of searching a 
given window. 

Fig. 4 indicates, for a data file which was not 
among the training files used to estimate the 
models, the subsets of the phonetic trellis ("un- 
certainty regions") that have to be searched in 
each window in order  to find the optimal path. 

The size of the uncertainty regions is con- 
trolled by the parameter  A whose value has to be 
determined empirically so as to ensure that the 
uncertainty regions are guaranteed to contain the 
optimal path. 

As well as limiting the portion of the phonetic 
trellis that has to be searched, the node-time 
assignment can also be used to reduce the point 
score calculations in each window. Firstly there is 

2500 p 1 i i i i i ~ i 

ovtim~ v ~  ~ 
2000 Uncertainty window . . . . .  

;---.. 

. . . . .  , 

: . . .~  , . . . . .  

5O0 

0 
0 5 10 15 20 25 30 35 40 45 50 

Time (seconds) 

Fig. 4. Typical uncertainty regions obtained by node-time 
assignment. 

phone pruning: the point scores need only be 
calculated for phones f with the property that 
there is a branch in the phonetic graph carrying 
the f label which joins two nodes both of which 
can be visited in the course of the window. Sec- 
ondly there is time pruning: in order to score such 
a branch, the only point scores V([t + 1, t ' ] l  f )  
that are needed are those defined by times t and 
t '  satisfying the conditions 
1. t is among the times that the node n can be 

visited, 
2. t '  is among the times that the node n'  can be 

visited, 
3. constraints on the duration of the f phone are 

respected. 

3.2. Experimental results 

Data for our experiments consisted of 105 
minutes of continuous speech uttered by a single 
male speaker, taken from a commercially dis- 
tributed book on tape. The speech rate was about 
170 words/minute .  The data was stored in twelve 
files (2 or 3 files per chapter) and was sampled at 
16 kHz and blocked into frames of 30 ms, spaced 
10 ms apart. The first 8 MFCC coefficients (Davis 
and Mermelstein, 1980) and their first difference 
(Deng et al., 1991) were used to form one 15-di- 
mensional vector for each frame (the loudness 
coefficient C O was used only for the difference 
coefficients). 

The text of the book was read using an optical 
character reader and manually verified to correct 
for scanning errors (about 2%) and speaker er- 
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rors (less than 1%). Phonetic graphs correspond- 
ing to the training scripts were constructed using 
a 60000-word pronunciation dictionary which 
contains an average of 2.2 phonetic transcriptions 
per word. Typically each training script was about 
1100 words long; the corresponding phonetic trel- 
lises had 14000 nodes and were 36000 frames 
long. 

A total of 139 context-dependent phone mod- 
els were trained. Each of the models was a left- 
to-right Gaussian mixture HMM having 25 mix- 
ture components per transition and a single co- 
variance matrix per phoneme. (That is, the co- 
variance matrices associated with the mixture 
components used to model the various allo- 
phones of a given phoneme were tied.) 

On each iteration of training, a phonetic tran- 
scription and segmentation of the data in each 
file was found using the sliding window block 
Viterbi search. This search does not keep track of 
the alignment of the individual frames with the 
internal transitions of the phone models (memory 
requirements would be greatly increased if it did). 
These internal alignments are therefore calcu- 
lated in a (relatively inexpensive) second pass 
through the data and new models were generated 
by the standard reestimation procedures. 

The object of the experiments was to demon- 
strate the validity of the lookahead procedure, 
determine suitable values for window length L 
and lookahead interval B, and estimate the com- 
putational and memory requirements when the 
sliding window block Viterbi search on each iter- 
ation is implemented in such a way as to take 
advantage of segmentation information extracted 
from the preceding iteration. 

3.2.1. Path convergence and lookahead interval 
Fig. 5 is typical of what is observed when 

backtracking the N best paths at the end of a 
window. In this example, B is 4 sec and L is 
made equal to zero to allow backtracking over 
the entire interval from 0 to 4 sec. The 75 best 
paths (at 4 sec) merge in a single path in less than 
1.50 sec. Again the speech file used here had not 
been seen during the training. This suggests that 
the optimal path could merge with the best path 
in less than 1 sec most of the time, i.e., that a 
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lookahead interval B of a second or less could 
guarantee an optimal search. 

An experiment was run to determine exactly 
how large the lookahead interval B has to be for 
optimality. Fig. 6 shows estimated errors in seg- 
ment boundary location as a function of the 
lookahead interval B, for speech data seen dur- 
ing previous iterations of training training and for 
speech that has never been seen before. The total 
of window length (L) plus lookahead interval (B) 
was kept constant at 4 sec, while lookahead inter- 
val B was varied from 0.06 to 2.0 sec. There were 
3786 and 3873 segments in the seen and unseen 
speech data, respectively. 

Errors were estimated by comparing with a 
reference segmentation obtained with a 3 sec 
lookahead interval. As pointed out in Section 2.1, 
the search becomes optimal when a large enough 
value of B is reached; we found no change in 
segmentation for any B beyond 0.8 sec (up to 3 
sec). Thus the 3 sec segmentation can be assumed 
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to be optimal, and we considered differences 
from this segmentation as errors. The figure shows 
that using a lookahead interval of more than 
about 0.8 sec is not necessary, even for speech 
that has not been seen before. 

The window length L is made as large as 
permitted by computation and memory limits. In 
practice, we use a length of 3 sec. The overhead 
for one second lookahead then accounts for only 
one-fourth of total processor and memory use. 

3.2.2. Computation and memory requirements 
For a typical speech file of 6 minutes, the 

phonetic graph has about 14000 nodes and is 
36 000 frames long. In order to guarantee that the 
uncertainty regions always contain the optimal 
path we set the parameter  a to be 2 sec. (This is 
more generous than is really necessary. After a 
few iterations of training have been performed, 
large shifts in segment boundaries between suc- 
cessive iterations are rarely observed.) With this 
value of A, the number of nodes that can be 
visited in an interval of length 4 sec (recall that 
we took L to be 3 sec and B to be 1 see) is about 
300. 

We found that under these conditions, phone 
pruning reduced the point score calculations for 
each window by about a factor of 2 and that time 
pruning reduced the calculation of the remaining 
point scores by another factor of 2. The total 
computation for the sliding window block Viterbi 
search was about 15 times real time on an HP 
Apollo 9000/720 workstation. A full training iter- 
ation took an additional 0.5 times real time (to 
perform the within-model Viterbi alignments and 
the reestimation procedures). 

Under  the same conditions, the memory re- 
quired to search a window is about 10 Mbytes; 
the trellis occupies about a third of this and the 
precomputed point scores occupy the remainder. 

4. Conclusion 

Extending the sliding window idea, we devel- 
oped a training algorithm requiring a fixed 
amount of memory, that can be used on unseg- 
mented, unlimited length speech utterances. In 

our experiments selection of a single survivor 
path could be made optimal by looking at its 
future less than 1 sec ahead. Retaining only one 
survivor at each window is particularly efficient 
when performing a block Viterbi search which 
incorporates phoneme duration constraints in a 
natural way, as well as segmentation information 
derived from prior training iterations. This algo- 
rithm does not require training utterances to be 
spoken in isolated-sentence mode, so it makes 
available abundant sources of natural speech data. 
We were able to train HMM models from 6 
books on tape partitioned into speech files of 6 
minutes on average, varying from 2 to 57 minutes. 
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