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1 INTRODUCTION

Many applications require recognition of spoken isolated words or phrases from
a large vocabulary. For example, the goal of the 86000-word recognizer at
INRS-Télécommunications [14] is to transcribe speech spoken as a sequence of
isolated words. The sentences to be read are chosen arbitrarily from a vari-
ety of sources, including newspapers, books, magazines, etc. Another example
is the StockTalk system running at BNR Montreal [24], which dispenses real
time stock quotes by voice over the telephone for stocks traded in New York,
Toronto and NASDAQ stock exchanges. The vocabulary for this system con-
sists of words or phrases spoken in isolation. This system requires speaker-
independent recognition over the telephone, while the first example requires
speaker-dependent recognition over high quality microphones.

A typical flowchart for recognizing words or phrases in such applications is
shown in Figure 1. There are many variations to this flow chart depending
on the preferences of individual researchers, and many possibilities within each
block. In describing these blocks, we will be guided by our own experiences,
and to some extent will reflect our point of view.

At a higher level, we can divide the speech recognition algorithms into two
categories: word-based or sub-word-based. Word-based recognition algorithms
create a model for each word or phrase in the vocabulary. These algorithms
are only suitable for small vocabularies. Each word-model has to be trained
from several utterances of the word. For large vocabulary, word-based recog-
nition requires unreasonable computing capabilities and a large effort in data
collection in order to train the word models.
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The alternative is to use sub-word based recognizers. The sub-words could
correspond to phonemes, diphones, demi-syllables, speech segments etc. The
idea in all these units is to reduce the total number of models required to
transcribe any possible word in the vocabulary. Phonemes result in the smallest
number of models. In phoneme based recognizers, each word is represented as
a sequence of phonemes. Since there are roughly 40 phonemes in English, we
can get away with training only 40 models instead of thousands for word-based
systems. For this reason, phoneme-based recognizers require much less speech
data to train the models. The computing complexity is also significantly less
than that for word-based recognizers. In fact, the point where the computing for
word-based recognizers becomes unreasonable is around a few hundred words.

Even though we are talking about models for phonemes, many researchers have
shown that creating models for allophones [23] improves recognition accuracy.
Allophones are phonemes in context. The acoustic realization of phonemes
varies considerably depending on context (previous and following phonemes),
on stress, on position in the syllable, on dialect etc. By representing the major
variations as separate models, we can improve recognition accuracy signifi-
cantly. However, there is some debate on the optimal number of allophones
required to achieve good recognition accuracy. Various research groups have
used anywhere from a few hundred to a few thousand allophones. Also, how to
create these allophones is an issue. For example, Kai-Fu Lee [23] and Hon [15]
have used phonemes in triphone contexts (previous and following phoneme)
and a measure based on entropy reduction to choose their triphones. Bahl et al
(6] at IBM have been recommending an approach based on data driven decision
trees, and their allophone contexts can span up to 3 phonemes to the left and
three phonemes to the right. The contextual variations due to co-articulation
are a bigger problem in continuous speech than in words spokens in isolation,
and Gopalakrishnan has probably addressed this issue in detail in the Chapter
on continuous speech recognition.

Phonemes or allophones are not the only units used successfully in speech recog-
nition. Bahl et al [5] use fenones as basic units. Fenones are data driven, and
not driven by linguistic theory. A word in the vocabulary is represented as
a sequence of fenones. Approximately 200 fenones are used to represent any
word in the vocabulary. Fenones are probably described in detail in the article
by Gopalakrishnan, since the speech recognition group at IBM has championed
this approach. We will primarily stick to phonemes or allophones in our discus-
sions. The search techniques or language models do not depend on the choice
of phonemes or fenones, and all the algorithms which apply to phonemes also
apply to other units as well.
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Even though there are many ways to create phoneme or allophone models, the
current best methods use Hidden Markov Models (HMMs). Many different
styles of models have been used by various researchers. We can classify these
styles into three broad categories based on the probability density function
used for the observation vectors: discrete (or VQ-based) models, Gaussian
mixture density based models, and tied mixture models. In VQ-based models,
the observation vectors are mapped into discrete units by using one or more
codebooks. For example, in Gupta et al [13], two separate codebooks are used
to represent static and dynamic feature vectors. Kai-Fu Lee [23] uses three
codebooks to represent the feature vector: one for the static parameters, one
for the dynamic parameters, and one for the power and the dynamic power.
Juang et al [18] use Gaussian mixture densities to represent the probability
distribution of the observation vector. Tied mixture models also correspond to
the Gaussian mixture models where the Gaussian mixtures are shared by all
the transitions in one or more models.

Many different training algorithms have been used to train these models. These
training algorithms include Viterbi training, forward-backward training, maxi-
mum mutual information (MMI) training, corrective training etc. In this Chap-
ter we will focus on search algorithms, detailed matching strategies, and lan-
guage modeling.

2 SEARCH ALGORITHMS

The goal of the recognizer is to transcribe words spoken as a sequence of isolated
words. Since the words are spoken in isolated fashion, we can find the endpoints
of each word, and transcribe each word separately. The task of the search
algorithm is to find the most likely word hypothesis or to narrow this hypothesis
to a few possible choices. Computing considerations dictate that we accomplish
this with as little computing as possible without losing the correct choice from
the hypothesis list.

A simplistic approach to large vocabulary recognition would compare the spo-
ken word against all possible phonemic transcriptions for all the words in the
vocabulary. To score all the words in the vocabulary in real-time would re-
quire hardware with computing capability on the order of hundreds of millions
of floating point operations per second. The cost of the hardware to provide
such computing capabilities would be prohibitive. To reduce the number of
candidates for detailed comparison, we require an algorithm to perform fast
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Figure 1 Block diagram for a typical large vocabulary isolated word speech
recognition system.

search, reducing significantly the size of the list for subsequent detailed match-
ing. A number of algorithms exist which reduce this search. These search
algorithms can be classified into three general categories: search algorithms
based on Viterbi decoding, those based on A* heuristic search, and those based
on fast match search.

2.1 Search Algorithms based on Viterbi
decoding

The Viterbi decoding algorithm [31] provides an efficient way to get the most
likely candidate. The earliest application of Viterbi decoding to speech recog-
nition dates back to Vintsyuk [30]. The Viterbi algorithm provides the optimal
frame synchronous search through a lexical graph whose branches represent
allophonic or phonemic HMMs, and any path through the graph represents
a lexical entry in the dictionary. Lee and Rabiner [22] give a good tutorial
on the frame-synchronous search algorithms. Let us look at a rough estimate
of computing involved in this frame-synchronous search algorithm. The com-
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puting complexity is proportional to the total number of transitions in all the
HMMs associated with the lexical graph. For example, let us assume that the
graph for a dictionary containing 20,000 phonemic transcriptions has a total
of 100,000 branches. If each HMM has an average of 15 transitions, then the
total computing per frame is proportional to 1,500,000. For a frame rate of 100
frames/second, we require computing capability in the order of 1500 million
operations per second.

Another disadvantage of Viterbi algorithm is that it does not give us multiple
choices economically. To generate multiple choices, we have to maintain mul-
tiple choices at each node in the lexical graph [22] resulting in a corresponding
increase in computing. Soong [29] has shown how multiple choices can be
obtained by carrying out a tree-trellis search after the Viterbi algorithm. His
algorithm requires same computing complexity as the Viterbi algorithm for gen-
erating the top choice, but requires more memory for storing the intermediate
values during Viterbi search. These values are then used during the tree-trellis
search.

In order to reduce the computing even further, some people have resorted to
beam search. Viterbi algorithm maintains all possible paths and extends these
paths every frame, and the most likely path at the last frame corresponds to
the optimal path. By extending only the most promising paths, the overall
computing can be reduced significantly. For example, Ney [25] has shown that
he can reduce the computing by an order of magnitude by using beam search
together with proper structures to identify active partial paths. The beam
search requires additional memory in order to track which paths are still alive
and need to be extended during Viterbi search.

The tuning parameters which control beamwidth depend on the recognition
task, and are usually set so as to minimize decoding errors while reducing
computing as much as possible. These parameters may again have to be tuned
even for the same task if the models or vocabulary or both are changed. If the
graph represents a tree, then the beam search can also give multiple hypotheses.
However, generating multiple hypotheses would require significant increase in
computing, since the beam width would have to be increased significantly. To
reduce the beamwidth, language model and any other sources of knowledge are
incorporated during the frame-synchronous beam search [22] [25].
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2.2 Search Algorithms based on A* algorithm

A* search algorithm [26] is a best-first optimal heuristic search as long as all
its conditions are satisfied. The search keeps the partial paths on a stack and
extends the partial path with the highest likelihood. The likelihood of the
partial path includes the actual likelihood of the partial path and an estimate
of the remaining path. The heuristic function which estimates the likelihood
of the remaining path must provide a likelihood greater than or equal to the
actual likelihood of the remaining path. As long as this condition is satisfied,
A* search ensures optimality. There are some trivial heuristic functions which
satisfy the optimality condition (for example, likelihood of 1). However, such
functions would lead to a slow breadth first search. The heuristic functions
which yield fast and focussed search are the ones which estimate the likelihood
of the remaining path close to the actual likelihood.

An early example of the A* search algorithm is the stack decoding algorithm
[16] [17]. In this algorithm, the likelihood of the remaining path was estimated
as the likelihood of observing the remaining acoustic data independent of the
path by collecting long term acoustic statistics. This likelihood was multiplied
by a factor to ensure optimality. To avoid the search becoming breadth first
search, the factor was controlled in order to ensure that the longest paths were
slowly favored and extended.

Another example of the A* search algorithm is the syllabic graph search algo-
rithm used by Gupta, Lennig and Mermelstein [12]. In this algorithm, they
first find the number of syllables n in the word using syllable models, and then
carry out an A* search through a network representing n syllables. This sylla-
ble network is much smaller than the network representing the entire lexicon
(a few thousand branches versus a few hundred thousand branches). Every
branch of the graph is scored independent of its phonetic context, allowing a
fast computation of the branch likelihoods. The A* search then generates mul-
tiple choices using these branch likelihoods. In this search strategy, the scoring
of branch likelihoods is fast. The speed of search depends on number of choices
necessary in order to include the correct choice among these hypotheses. For
the 86,000 word recognizer, this algorithm required on an average 300 choices
per word to keep the number of search errors to less than 2% (search error is
when the correct hypothesis is not included in the hypothesis list).

Another example of A* search is the A*-admissible lexical search used by Kenny
et al [20]. In this search algorithm, Kenny defines a class of heuristic functions
which allow for a tradeoff between the efficiency of the search and the burden
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of evaluating the heuristic scores. The heuristic scores for the partial path are
estimated using a reduced graph together with the Viterbi scoring algorithm.
Two examples of these reduced graphs are two-phone and one-phone look ahead
graphs. In two-phone look ahead graph, the reduced graph only ensures that
the next two phones are identical to those in the lexical tree. This allows a
much simpler graph to be constructed to estimate the heuristic scores. The
heuristic scores by design turn out to be higher than the Viterbi scores. The
two scores are merged by considering all possible segmentations corresponding
to exact and heuristic scores. Only a few of these segmentation hypotheses
have to be saved in order to achieve optimal decoding, resulting in significant
savings in computing.

The advantage of this algorithm is that the actual score at the end of the search
corresponds to Viterbi likelihood, and therefore, the search can be stopped as
soon as the necessary n hypotheses have been obtained. While in the syllabic
graph search, significantly more choices than n have to be obtained in order
to get n best choices (the likelihoods in the first pass are rough likelihoods).
Even though the search is fast in the first-pass, the second pass computing is
significantly greater due to an average of 300 choices to be rescored in order
to get the correct hypothesis as one of the choices. For this reason, the A*-
heuristic lexical search turns out to be faster since there is no rescoring involved
(eliminating rescoring overhead) and fewer hypotheses have to be produced.

The disadvantage of this type of search algorithms is that they require large
amount of storage. For example, in Kenny’s A* search algorithm, the heuristic
scores have to be precomputed. Sufficient storage has to be allocated for the
stack to store all possible active hypotheses at any given time. Since the total
size of the stack cannot be predicted, the amount of memory necessary can
only be estimated by trial and error. In any practical application, the bottom
entries in the stack have to be pruned. Enough memory has to be allocated so
that truncating the bottom hypotheses does not lead to suboptimal results.

2.3 Search Algorithms based on fastmatch
algorithm

Another class of search algorithms called the fastmatch search algorithms rely
on a fast method to evaluate all the words in the vocabulary in order to gen-
erate a short list of candidates. We then use detailed match to evaluate these
candidates. The idea here is to get a short list as inexpensively as possible,
and to evaluate this short list in detail. For example, in IBM’s fast match
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algorithm [3], they collapse all the states in a hidden Markov model, reducing
the model to a one state model. Just this modification reduces the comput-
ing by an order of magnitude. For example, for an HMM with 15 transitions,
such a simplification reduces number of comparisons from 15 to one. They also
use a beam search together with fast match in order to reduce the computing
by as much as a factor of hundred. For the beam search, a threshold is used
to truncate all the nodes which are unlikely to yield a valid hypothesis. This
threshold is manipulated to allow paths of longer length to grow slowly. Such
combination of simpler models and beam search reduces the computing by a
factor of 100. Obviously, such reduced models require multiple choices to be
produced in order to avoid decoding errors. In IBM’s 20,000-word isolated-
word speech recognizer, a maximum of 100 choices is sufficient in order to keep
the percentage of decoding errors to a minimum.

2.4 Comparison of various Search Algorithms

The choice of the search algorithm depends on the requirements of the appli-
cation and the hardware on which the application has to run. For example,
Viterbi decoding using a beam search algorithm carries out all the computing
frame synchronously, and provides the top choice result as soon as the input
is finished. If the primary concern is the real-time delay in recognition, then
this is probably the ideal algorithm to use. In systems with large memory, for
example workstations, the computing complexity can be managed by tuning
the beam search parameters to minimize computing while keeping the loss in
recognition accuracy to a minimum. The drawback is that Viterbi decoding
requires significant amount of computing and provides only one recognition
choice. Post-processing to use more detailed models, segmental features, and
language models is not possible with only one choice. These algorithms are
generally embedded during the search algorithm, which makes the search algo-
rithm even more expensive. Obviously, a tree-trellis search [29] or some other
algorithm can be used after Viterbi decoding to provide multiple choices. The
tree-trellis search requires even more memory since intermediate results during
Viterbi decoding have to be saved for the tree-trellis search. Also, it intro-
duces delay, since tree trellis search can only be performed after the complete
utterance has been received.

A*-search algorithms result in significant reduction in frame-synchronous com-
puting. For example, Kenny et al [20] estimate the heuristic function using
Viterbi decoding on a much smaller graph which they call a two-phone look
ahead or a one-phone look ahead graph. Obviously, all the heuristic scores have
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to stored in order to be used during A* search. For example, for a two-phone
lookahead graph, they store the likelihoods for all possible two-phone sequences
in the vocabulary for all the frames in the acoustic input. The A* search also
introduces decoding delays, since the search can only start after all the input
is in. The delay depends on how rapidly the search proceeds, and this depends
on the heuristic function. Even though the average delay in getting top few
choices can be small, the maximum possible delay is unbounded. To avoid this
maximum possible delay, either the search has to be aborted, or some short cuts
have to be taken, resulting in sub-optimal decoding. Most of these parameters
can be tuned to limit the loss in recognition accuracy. Because of the large
memory requirements, these algorithms are well suited to hardware with large
memory, for example workstations.

The fastmatch algorithm actually uses simpler models, in effect reducing mem-
ory requirements during frame synchronous search. The simpler models reduce
the frame synchronous computing significantly. The beam search during fast-
match does bring some uncertainty to the amount of computing, but this can
be controlled by adjusting tuning parameters to allow the longest paths to grow
slowly. The fastmatch algorithm does introduce decoding delays, since all the
hypotheses have to be rescored using detailed models, segment based features
and language model etc. However, this delay can be controlled by limiting
the number of choices at the expense of some loss in performance. All these
facts show that fastmatch is ideally suited for hardware with limited memory
resources.

3 DETAILED MATCHING ALGORITHMS

Once we have a short list of word hypotheses, we would like to rescore these
hypotheses using best possible algorithms. Since only a few choices have to
be rescored, we can use more complex algorithms to rescore them, without
incurring heavy computational penalty. Let us look at some of the possible
rescoring algorithms.

If the search algorithm used simpler models, then one obvious choice is to use
the original models in their full complexity. Other possibilities include using
segment based features. For example, imposing constraints based on segment
durations and the energy profile of the segments. Where the spoken words are
from sentences or phrases, a language model can be used to enhance recognition
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accuracy. Where a language model cannot be used, some a priori information
about the word frequencies, etc. can possibly be used during rescoring.

Many researchers have used segment duration constraints to improve recogni-
tion accuracy. For example, Bush and Kopec [8] apply minimum duration con-
straints on digit-segments to improve digit-string recognition accuracy. They
find that a minimum duration constraint of 50 ms for each acoustic segment
is optimal for their digit-string recognizer. Soong [28] has used minimum du-
rations to improve phoneme recognition accuracy in spoken Japanese text. He
assigns minimum allophone durations to 2084 allophonic HMM’s to improve
phoneme recognition accuracy.

Many acoustic misrecognitions in the 86,000-word speaker-trained isolated word
recognizer at INRS-Télécommunications [11] are due to phonemic hidden Mar-
kov models mapping to short segments of speech. When we force these models
to map to longer segments corresponding to the observed minimum durations
for the phonemes, then the likelihood of the incorrect phoneme sequences drops
dramatically. This drop in the likelihood of the incorrect words results in sig-
nificant reduction in the acoustic recognition error rate. Even in cases where
acoustic recognition performance is unchanged, the likelihood of the correct
word choice improves relative to the incorrect word choices, resulting in sig-
nificant reduction in recognition error rate with the language model. On nine
speakers, the error rate for acoustic recognition reduces from 18.6% to 17.3%,
while the error rate with the language model reduces from 9.2% to 7.2%.

The minimum duration constraints we have found effective depend on the
phoneme. For the sonorants and affricates, one duration minimum per phoneme
is found to be effective everywhere, while for the remaining phonemes, the du-
ration minimum depends on whether the phoneme occurs in initial, medial or
final position in the word. These duration minima vary from 20 ms to 100
ms depending on the phoneme and the context in which it appears. Imposing
duration constraints does increase computing requirements. An algorithm to
impose these duration constraints efficiently is given in Gupta et al [11].

Segmental energy constraints have also been applied effectively to improve
recognition accuracy. For example, Bush and Kopec (8], and Kopec and Bush
[21] have applied energy constraints to improve isolated digit and digit-string
recognition accuracy. The energy constraints have been imposed on either the
peak energy in the speech segment or on the minimum energy in the speech seg-
ment. For example, imposing the constraint that the peak energy in a stressed
vowel segment be above a certain threshold reduces certain digit insertion er-
rors [8]. Forcing the minimum energy in voiceless fricative segments to be
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below a certain threshold reduces voiceless fricative confusion with sonorants
[21]. These constraints have been incorporated in their recognition algorithm
in order to improve recognition accuracy of their isolated digit and digit-string
recognizers.

In the 86,000-word isolated-word recognizer at INRS-Télécommunications, we
have succesfully applied energy constraints during training of the hidden Mar-
kov models for phonemes [11]. Many segmentation errors in the training data
are between high energy and low energy phonemes. A number of these seg-
mentation problems have been corrected by constraining the energy contours
to prevent phonemes with high energy from mapping onto phonemes with lower
energy. Segment boundaries between stops and sonorants, between fricatives
and sonorants, between affricates and sonorants, and between breath and sono-
rants are most amenable to correction using energy constraints [11]. Segment
boundaries between vowels, liquids, glides, and nasals can be corrected by using
duration minima. Correction of the segment boundaries between phonemes in
the training set leads to improved phoneme models, resulting in higher acoustic
recognition accuracy and higher recognition accuracy with the language model.

Other successful strategies to improve recognition accuracy include combining
results from two independent recognizers. For example, in a flexible vocabulary
recognizer for common stocks listed in New York Stock Exchange [24], two
separate feature parameters are used. The top choices using cepstral coefficients
are rescored using line spectrum pair parameters. The log likelihoods from the
two recognizers are then added. This method reduced the error rate from 5% to
4%. IBM has used a similar approach where they use two separate recognizers
using different dictionaries. One recognizer uses phonemes to represents words
in the dictionary, while another uses fenones to represent the words in the
dictionary. Combining the likelihoods from the two recognizers results in a
drop in word error rate from 2.5% (for fenonic models) to 1.8% for the combined
fenonic and phonetic models [7].

4 LANGUAGE MODELS

For each word of spoken input, the acoustic recognizer generates a list of word
hypotheses and their associated acoustic likelihoods. The language component
takes this probabilistic word lattice as input and uses a statistical model of
the syntactic, semantic, and pragmatic properties of English to generate the a
posteriori most likely word string. A number of language models have been used
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previously for speech recognition. The trigram language model [17] has been
used successfully for both a 5,000-word and a 20,000-word office correspondence
task [1]. Derouault and Merialdo [9] use a tri-POS (parts-of-speech) model for
a 250,000-word French recognizer. Application of a trigram language model to
a recognition task with such a large vocabulary was considered infeasible by
Derouault and Merialdo [9]. They also apply global syntactic constraints using
a sentence parser. However, application of global syntactic constraints results
in only a marginal improvement in the recognition accuracy of their system.
The advantage of a tri-POS language model is that it requires significantly less
memory for storage than a trigram language model and can be trained from
a small training text corpus. However, the tri-POS language model estimates
the probability of a word conditioned on the parts-of-speech of the previous
two words, resulting in much weaker linguistic constraints than the trigram
language model. Lee [23] and Rohlicek et al. [27] have used a simpler bigram or
word-pair language model in a 997-word resource management task. To make
best use of the available syntactic and semantic constraints, we have used a
trigram language model in the 86,000-word vocabulary recognition system at
INRS-Télécommunications.

The trigram language model parameters correspond to probabilities of words
conditioned on the previous two words. The number of parameters to be esti-
mated is enormous. For example, for the 86,000-word vocabulary recognition
system, 86,000% parameters have to be estimated. Even a training set con-
sisting of 60 million words is too small to estimate these parameters reliably.
Parameter estimates using relative frequencies would assign a value of zero to
a large fraction of the parameters. A number of algorithms exist for estimating
parameters for the trigram language model from sparse data. These algorithms
include the deleted interpolation method [2], and the backoff method [19]. In
the deleted interpolation method, the probability of word w3 conditioned on the
previous two words wy and ws, P(ws|wyws), is computed as a weighted aver-
age of the relative frequencies f(ws|wyw;), f(ws|wz) and f(ws) in the training
text corpus. (The relative frequency of ws conditioned on the context wiws is

flws|lwiwsy) = ﬂc%’ where the function C counts the number of occur-

rences of its argument in the text.) The deleted interpolation method requires
large amounts of storage for the parameters since both the weights and the
relative frequencies are stored. The weights are estimated using the forward-
backward algorithm which requires significant computing. The backoff method
[19] is storage efficient as it does not require storage of weights. It uses Turing’s
estimate [10] to compute the probability mass of all the trigrams which do not
occur in the training text corpus. This probability mass is then distributed
among the unseen trigrams using the bigram and monogram counts. In the im-
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plementation of the trigram language model at INRS Télécommunications [14],
we estimate the probabilities P(ws|wiwz) for the trigrams w;wows which do
not occur in the training text corpus by direct application of Turing’s estimate,
without resorting to bigram and monogram counts to partition the probability
mass.

We have found that the trigram language model is the most effective in im-
proving recognition accuracy. Let us discuss some of the issues involved by
analyzing our 86,000-word isolated word recognizer. The input to the acous-
tic recognizer consists of words separated by pauses of at least 150 ms. The
spoken text consists of sentences read (without punctuation) from text which
was selected randomly from magazines, books, and newspaper articles. An
endpoint detector segments the acoustic data A for the spoken word string

W = w} = wy,ws, ..., w, into subsegments A} = A;,..., A, corresponding to
the words wy, wa, ..., w, in the word-string. For each segment A;, the acoustic
recognizer generates a list w1, ...,w;n; of N; most likely word choices, together

with their likelihoods (P(A;|wij),j = 1,...N;). These likelihoods are smoothed
by taking their seventh root before being passed to the second step of recogni-
tion. Such a normalization achieves a balance between likelihoods derived from
the language model and the acoustic recognizer [4]. The probabilities

P(A|Wy) = P(Ai|wik,)P(Az|wak,) . . . P(An|wnk, ),

(where wjx,; corresponds to one of the hypothesized words for the acoustic seg-
ment A;) are used during search using the trigram language model. This search

applies the trigram language model to find the most likely word string w using

W= argmax P(Wy) P(A|Ws).

The acoustic recognizer generates the probabilities P(A|Wy), while the lan-
guage model provides the probabilities P(Wy).

It is interesting to examine where the language model is most effective in cor-
recting acoustic recognition errors. We analyzed the language model’s ability
to correct acoustic recognition errors as a function of the coverage of the word
and its context by the training set of the language model. Each word in the
test set is classified into one of six possible context coverage categories based
on the neighboring words found in the training text corpus. To clarify these
coverage categories, let us consider the word sank in the partial test sentence
every chair sank several inches. The word sank is classified into one of the six
categories as follows:



226 CHAPTER 9

m  five-word context: if Clevery chair sank] > 0 and C[sank several inches|
> 0 in the training text, then we consider word sank to have a five-word
context. Note that, we are not implying that the sequence every chair
sank several inches occurs in the training text nor that the sequence chair
sank several occurs in the training text. We are only saying that both
the sequences every chair sank and sank several inches are observed in the
training text.

»  four-word context: if Clevery chair sank] > 0 and C[sank several] > 0,
or C[chair sank] > 0 and C[sank several inches] > 0 in the training text,
then the word sank has a four-word context.

m  three-word context: if Clevery chair sank] > 0 and C[sank several] =
0, or C[chair sank] = 0 and C[sank several inches] > 0, or C[chair sank]
> 0 and C[sank several] > 0 in the training text, then sank has a three-
word context.

®m  two-word context: if C[chair sank] > 0 or C[sank several] > 0 (but
not both) in the training text, then sank has a two-word context.

m  one-word context: if C[chair sank] = 0 and C[sank several] = 0, but
C[sank] > 0 in the training text, then sank has a one-word context.

®  zero-word context: if C[sank] = 0 in the training text, then sank has a
zero-word context.

In the following text, when we refer to a test word having three-word context,
we mean that for this word the conditions outlined are satisfied for the three-
word context above, but not for any higher contexts (four-word or five-word
contexts). In Table I, we have tabulated how effective the language model is in
correcting acoustic recognition errors depending on these contexts. In compiling
this table, we only consider words where the word hypothesis list includes the
correct word, since only these words can be corrected by the language model.
The search algorithm commits 3.4% search errors, therefore, the acoustic and
language model recognition accuracies in Table I have been compiled from
96.6% of the test words. The effectiveness of the language model is found to be
directly related to the context coverage observed for that word. For example,
over 93% of the acoustic recognition errors are corrected for words having five-
word context. Most of the remaining errors for these words are due to very low
acoustic recognition likelihoods.

The language model is able to correct acoustic recognition errors even for words
for which only two-word context is found. That is, the language model is
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Context Number of | Acoustic Recognition | Percentage of
words recognition | with language acoustic
(%) model(%) €ITors
corrected
five-word 2000 88.3% 99.3% 93.6%
four-word 2156 85.3% 97.9% 85.8%
three-word 1646 82.0% 93.1% 61.6%
two-word 840 81.2% 85.1% 20.9%
one-word 306 80.4% 71.6% -45.0%
zero-word 47 87.2% 59.6% -216.0%
search errors 245
average 84.7% 94.2% 62.3%

Table 1 Effectiveness of the trigram language model to correct words in the
test set depending on contexts occurring in the training text corpus.

effective even when only one of the bigrams (with the word on the left or right
of it) has a nonzero count in the training text. One example of a word from
our test set having two-word context is this in the sequence have weighed this
thought with. The 60-million word training text has Clweighed this] = 0,
C[this thought with] = 0, and C[this thought] > 0. Another example is
the word wives in the sequence men without wives whereas the. In this case,
the training set has Clwithout wives] = 0, C[wives whereas the] = 0, but
Clwives whereas] > 0.

The language model increases the recognition errors for words with neither the
left nor the right context in the training text. In such cases, the language model
does not have enough contextual information. Luckily, only 5% of the words
fall in this category. Some examples of such words are energy and wasters in
the sequence most profligate energy wasters on. Neither the bigram profligate
energy nor energy wasters occurs in the training text. The word energy does
occur in the training text. The word wasters does not occur even once in the
60-million word training text. Some other examples of words in the test set
which do not occur in the training text are barnburner, gondolier, heuristics,
amoebas, sashaying, luminol, Marley, doorless, etc.
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