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The motivation of this study is the poor performance of speech recognizers on the stop
consonants. To overcome this weakness, word initial and word final stop consonants are
modeled at a subphonemic (microsegmental) level. Each stop consonant is segmented into a

- few relatively stationary microsegments: silence, voice bar, burst, and aspiration.
Microsegments of certain phonemically different stops are trained together due to their similar
spectral properties. Microsegmental models of burst and aspiration are conditioned on the
adjacent vowel category: front versus nonfront vowels. The resulting context-dependent
microsegmental hidden Markov models (HMMs) for six stops possess the desired properties
for a compromise between modeling accuracy and modeling robustness. They allow the
recognizer to focus discrimination onto those regions of a stop that serve to distinguish it from

- other stops. Use of these models in recognition experiments for word lists consisting of CVC
words reduces the error rate by 35% compared with the result obtained by using one HMM

for each stop phoneme.

PACS numbers: 43.72.Ne, 43.72.Ar, 43.70.Fq

INTRODUCTION

In many large vocabulary speech recognizers, each
phoneme is represented by a single hidden Markov model
- (HMM)," and words are modeled by concatenating phone-
mic HMMs (Bahl et al., 1980; Merialdo, 1987; Lee and Hon,
1988; Murveit and Weintraub, 1988; Gupta et al., 1988;
Deng et al., 1988).> This phonemic modeling approach,
evaluated in a 75 000-word speaker-dependent recognition
system (Gupta et al., 1988; Deng et al., 1988), showed a
weakness in discriminating among stop consonants, espe-
cially in monosyllabic consonant-vowel-consonant (CVC)
words that contain stop consonants. In order to provide a
diagnostic tool for investigating the source of stop confu-
sions, we designed a list of mostly CVC words, rich in stop
consonants and containing many minimal pairs. The error
rate for acoustic recognition of this word list was nearly
three times as high as that for normal prose texts. This result
indicates that the phonemic HMM does not adequately rep-
resent the temporally local context-dependent acoustic fea-
tures that distinguish one stop phoneme from another.

The techniques of diphone and triphone modeling have
been successfully used in speech recognizers with vocabu-
lary sizes on the order of 1000 words (Schwartz et al., 1984;
Paul and Martin, 1988; Lee et al., 1989). In larger vocabu-
lary systems such as our 75 000-word recognizer, the num-
ber .of triphones required is of the order of 15000. The
amount of speech required to train such a large number of
triphones would make speaker-dependent recognizers im-
practical. Derouault (1987) and Deng et al. (1990) have
attempted to reduce the number of triphone models by merg-
ing triphones according to acoustic-phonetic knowledge
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about expected coarticulatory effects. However, this tech-
nique has not proved useful when the amount of training
data is limited to about 1000 words (Deng et al., 1990). Lee
et al. (1989) have proposed an automatic triphone cluster-
ing algorithm based on information-theoretic criteria, but
their algorithm requires presence in the training data of all
the triphones to be clustered, and hence is not directly appli-
cable to our very large vocabulary recognition task. There-
fore, reducing phonemic confusions in large vocabulary
speech recognition requires new strategies.

The strategy that we propose in this article is to exploit
the microsegmental structure of stops (Fant, 1973). The ba-
sis for this strategy is that different stop phonemes and dif-
ferent allophones of the same stop phoneme often share com-
mon microsegments. Since common microsegments
occurring in different phonemes do not provide discrimina-
tive information, they can be represented by a single model.
Discrimination then focuses on the small number of micro-
segments that differentiate stop phonemes. Because training
data for common microsegments are pooled across tokens of
different phonemes and of different allophones, model ro-
bustness is enhanced.

Moore et al. (1983) have proposed a technique for fo-
cusing recognition in whole-word pattern matching in a dy-
namic time warping based speech recognizer. For example,
in discriminating the two words stalagmite and stalactite, it
is desirable to eliminate confusions caused by irrelevant dif-
ferences in the regions stala- and -ite. This is accomplished
by constructing a network where these regions are integrated
into a common path. Such discriminative focusing at the
phoneme level is already inherent in phonemic recognizers.
The present study is intended to extend this concept to a
subphonemic level. This extension is desirable since many
contrasting phoneme pairs, especially stops, differ acousti-
cally in only a small part of their overall extents.

In Sec. I of this paper, we introduce our microsegmental
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analysis of stop consonants and describe the construction of
microsegmental models. Section II presents isolated word
recognition results. Section III is a summary and discussion
of our new stop modeling approach.

Il. MICROSEGMENTAL MODELING OF STOP
CONSONANTS

A. Inventory of microsegments for stop consonants

The stops /ptkbdg/ are produced by complex move-
ments in the vocal tract. Acoustic analysis shows that, when
a stop is adjacent to a vowel, several segments of rather dis-
tinct spectral properties can be identified (Halle et al., 1957,
Fant, 1973). Figure 1 is a spectrogram illustrating these mi-
crosegments for the voiced stop /b/ in the word bib. For the
initial* /b/ in this token, it is easy to identify a voice bar
microsegment, whose spectrum is dominated by low-fre-
quency energy, and a very short.stop burst microsegment,
whose energy is more spread out over frequency. The initial
voice bar can sometimes be weak or absent. The final stop
/b/ in this example can be decomposed into voice bar, burst,
and final voiced stop aspiration microsegments. Voice bars in
initial and final positions tend to have similar spectral char-
acteristics. The same can be said of stop bursts of a given
phoneme.

For the voiceless stops, different microsegments can be
identified. Figure 2 is a spectrogram of the word pep. For the
final /p/, there is a silent closure period before the burst
starts. We will call this the silence microsegment. Unlike
initial /b/, initial /p/ has a rather long and easily identified
aspiration after the burst, making the burst and aspiration
look similar to those in final position.

The above observations largely hold for stops having
other places of articulation as well. Each of the microseg-
ments discussed above will be represented by a single HMM.
Because microsegments are shared across different allo-
phones and phonemes, the number of microsegmental
HMMs required is not large. This is important because it
will improve the robustness of the trained models. In this
study, the following nine microsegments are used in various

combinations to represent the six stops in initial and final
positions:

(1) wvoice bar, which occurs in final /bdg/ and optional-
ly in initial /bdg/; a two-state HMM is used.

(2) silence, which occurs optionally in final /ptk/; a
two-state HMM is used.

(3) final voiced stop aspiration, which occurs optional-

. lyin final /bdg/; a three-state HMM is used.

(4) /b/ burst, which occurs in initial /b/ and optional-
ly in final /b/; a two-state HMM is used.

(5) /d/ burst, which occurs in initial /d/ and optional-
ly in final /d/; a two-state HMM is used.

(6) /g/ burst, which occurs in initial /g/ and optional-
ly in final /g/; a two-state HMM is used.

(7) /p/ burst + aspiration, which occurs in initial /p/
and optionally in final /p/; a four-state HMM is
used.

(8) /t/ burst + aspiration, which occurs in initial /t/
and optionally in final /t/; a four-state HMM is
used.

(9) /k/ burst + aspiration, which occurs in initial /k/
and optionally in final /k/; a four-state HMM is
used.

The burst and burst + aspiration microsegments (4)—
(9) are referred to as the release microsegments, since they
include the acoustic result of the release of intraoral pressure
accumulated during the closure portion of the stop.

Medial voiceless stops in /s/-stop-vowel context, e.g.,
/k/ in the word sky, have some special microsegmental
properties. As an example, a spectrogram of the word sky is
shown in Fig. 3. Due to the presence of the preceding /s/, the
stop /k/ is unaspirated. Its burst looks different from the
burst + aspiration portion of initial /k/. Instead, it resem-
bles the burst of initial /g/. Therefore, /k/ in sky is segment-
ed into silence followed by /g/ burst. In general, the voiceless
stop in an /s/-stop-vowel context is modeled as silence fol-
lowed by the burst of the homorganic voiced stop.

While the above models represent stops in initial, final,
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FIG. 1. Spectrogram of the word bib
/bib/, illustrating voice bar and burst
microsegments of initial voiced stop /b/
and voice bar, burst, and final aspiration
microsegments of final voiced stop /b/.
These two voice bars are trained jointly,
as are the two bursts.
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and /s/-stop-vowel positions, representation of other medial
stops, including flaps and medial clusters, requires more
complex analysis. At this preliminary stage, we have not
attempted to model medial stops. Except for stops in /s/-
stop-vowel position, medial stops are simply represented by
one model per phoneme. That is, each medial stop is repre-
sented by one HMM trained from all the tokens of that
phoneme occurring medially in the training set.

In the microsegmental modeling of stops described so
far, two complications arise. First, the voice bar of an initial
voiced stop may or may not be present in a given token.
Second, final stops are sometimes unreleased. If we force the
occurrence of a microsegmental model for a microsegment
that is missing in the actual utterance, a low recognition
score will result. To avoid this, we introduce a null transition
(Jelinek, 1976) in parallel with the HMM representing the
optional microsegment (voice bar in initial position and
burst, final voiced stop aspiration, and burst + aspiration in
final position). The relative weights of the null transition
and of the optional microsegment are determined by the rel-

burst/aspiration

FIG. 2. Spectrogram of the word pep
/pep/, illustrating the burst + aspira-
tion microsegment of initial voiceless
stop /p/, and silence and burst + aspira-
tion microsegments of final voiceless
stop /p/. The two burst + aspiration mi-
crosegments are trained jointly.

ative frequency with which the optional microsegment is ob-
served in the training data.

B. Context dependence of the release microsegments

The microsegmental models described above have sig-
nificantly improved the discrimination of stops, as will be
shown in Sec. II. Yet, further improvement is obtained by
taking account of the fact that the spectral properties of cer-
tain stop microsegments are strongly affected by the adja-
cent vowel. Coarticulatory effects can be seen most clearly
for stops in front versus nonfront vowel contexts. As a first
step in context-dependent modeling, the current study ex-
amines these contexts. Figures 4-6 illustrate these coarticu-
latory effects through spectrographic examples.

Figure 4(a) and (b) shows spectrograms of the word
kick /kik/ and coke /kok/, showing the different spectral
effects of front /1/ and back /o/ on the burst + aspiration
portion of the /k/ in both initial and final positions. Depend-
ing on whether the adjacent vowel is /1/ or /o/, the frequen-
cy location of the burst + aspiration energy in /k/ is signifi-
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sky

FIG. 3. Spectrograms of the word sky
/skaj/, illustrating the silence and burst
microsegments of voiceless stop /k/ in
an /s/-stop-vowel context. Note that, in
such a context, the voiceless stop is un-
aspirated.

930 ms
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FIG. 4. Spectrograms of words (a)
kick /kik/ and (b) coke /kok/,
showing coarticulatory effects on
/k/ by the adjacent vowel. The spec-
tral prominences of the burst and

Hz

cantly different: One is widely spread around 3000 Hz, while
the other is concentrated near 1700 Hz.

Two more examples are provided in Figs. 5 and 6. Fig-
ure 5 shows the coarticulatory effects of front and back vow-
elsoninitial /p/ in words pea /pi/ and poke /pok/. It is clear
that spectral energy of the burst + aspiration portion of /p/
is concentrated above 2000 Hz with the presence of the fol-
lowing /i/, while if the following vowel is /o/, the spectral
prominences of the burst + aspiration portion of /p/ are of
lower frequency. A similar vowel-dependent effect on the

aspiration for both the initial and fi-
nal /k/ are well above 2 kHz with
the front vowel context /1/, while
they are well below 2 kHz with the
back (nonfront) vowel context /o/.

| (b) coke

initial /g/ is shown in Fig. 6 in the example words geese /gis/
and go /go/.

These observations on coarticulation motivated our de-
velopment of context-dependent models of the release mi-
crosegments. Two vowel contexts are used in the modeling:
front versus nonfront. The diphthong /aw/ is always asso-
ciated with the nonfront-vowel group, while /5j/ and /aj/
are associated with the nonfront-vowel group when they in-
fluence a preceding stop and with the front-vowel group
when they influence a following stop. The release microseg-

80001+
Hz

FIG. 5. Spectrograms of words (a)
pea /pi/ and (b) poke /pok/, show-
ing coarticulatory effects of vowels

Hz
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on initial /p/.
| (b) poke
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FIG. 6. Spectrograms of words (a)

Hz

6000

40004

20004

ments are conditioned on the front versus nonfront vowel
context, thereby adding 6 microsegments into the 9 micro-
segments described previously for a total of 15 microseg-
mental HMMs.

II. SPEECH RECOGNITION EXPERIMENTS

Prior to the present work, our large vocabulary speaker-
trained isolated word recognizer used one HMM to repre-
sent each phoneme of English (except for the phonemes /1/
and /r/, for each of which two allophonic HMMs were
used). The recognition performance obtained by this sys-
tem, based essentially on one model per phoneme, is the
benchmark with which we will compare the effect of using
the more sophisticated stop models presented in this paper.
We have also trained and tested a system based on three
allophone models per stop phoneme, corresponding to ini-
tial, medial, and final positions. Finally, we have tested two
microsegment-based systems (cf. Sec. I). The first uses nine
microsegmental models. In the other, the 6 release microseg-
ments are modeled context dependently, resulting in a total
of 15 microsegmental HMMs.

Two male native speakers of English, one American and
one Canadian, read the training and test sets once each. All
HMMs were trained using the standard forward-backward
algorithm (Baum, 1972; Liporace, 1982). The HMMs used
multivariate Gaussian density functions with full covariance
matrix for the output probability densities on each transi-
tion. One pooled covariance matrix was used per HMM.

A. Training set

The training text consists of two parts: a prose part and a
word list part. The prose part contains 925 words of arbitrar-
ily selected passages from English language newspapers,
books, and magazines. The word list part consists of 278
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geese /gis/ and (b) go /go/ showing
coarticulatory effects on initial /g/.

910 ms

monosyllabic English words. Most of these are CVC words
containing stop consonants.

The subset of the training data used to train the micro-
segment models consists of all 278 words in the word list part
together with 300 of the 925 words in the prose part of the
training set. The microsegments in these 578 tokens were
manually segmented whenever the microsegments could be
clearly identified through inspection of the spectrogram.
Ambiguous, uncertain, or unclear microsegments were dis-
carded from the training set.

The entire 1203-word training set was used to train the
whole-phoneme HMMs, used to represent the stops in the
benchmark experiment, and to represent phonemes other
than stops in all experiments. In the experiment using three
allophones per stop phoneme, stop tokens in the 1203-word
training set were partitioned into initial, medial, and final
occurrences to train their respective allophone models. The
medial models were reused in the microsegment experiments
to represent medial stops not modeled microsegmentally.

B. Test set

Recognition experiments were performed using two test
sets. The first test set is a word list whose vocabulary is dis-
junct from the word list used for training. The second test set
consists of prose passages and does not include any of the
prose selections used in training. The word list test set con-
sists of 312 English words. These are mostly CVC words, as
well as some CVCV words and words containing /s/-stop
vowel. The CVC(V) words are selected to be highly confu-
sable, e.g., bit, bid, bib, big, and bitter. The prose test set
consists of 396 words of texts selected arbitrarily from books,
magazines, and newspapers. The average rate of occurrence
of initial and final stops in the prose test set is 0.487 times per
word.

Deng et al.: Modeling microsegments 2742



C. Recognition system description

The recognition system in which we evaluate the effec-
tiveness of microsegmental models for stops is the same as
the one described in Gupta ez al. (1988) except the vocabu-
lary size has been increased from 60 000 words to 75 000
words. The system will be briefly reviewed here.

Speech material, read with quarter-second pauses be-
tween words, is recorded in a quiet sound booth at a sam-
pling rate of 16 kHz. A Hamming window of duration 25.6
ms is applied every 10 ms. For each Hamming window, a 15-
dimensional feature vector is calculated. The vector consists
of mel-frequency cepstral coefficients (Davis and Mermel-
stein, 1980), augmented by their differences over time.

The recognition phase starts with automatic segmenta-
tion of words from the input sentence. Next, for each word to
be recognized, a fast search strategy uses a syllable network
(Gupta et al., 1988) and a variant of the stack algorithm
(Jelinek, 1976) to generate about 70 word candidates. Final-
ly, likelihood scoring is carried out for these word candidates
to determine the final acoustic likelihood values.

In the work presented here, microsegmental modeling is
used only during the likelihood scoring of the word candi-
dates (not during the fast search). The results reported as-
sume that the list of word candidates generated by the fast
search always contains the correct word.*

D. Recognition results

For each input word, the output of the acoustic recog-
nizer is an ordered list of word hypotheses together with
their likelihood scores.” The performance of the acoustic
recognizer is evaluated using three measures: the percentage
of words correctly identified as the top (highest likelihood)
word choice, the average rank of the correct word in the
ordered candidate list, and the average difference between
the log likelihoods of the correct word and of the highest
scoring incorrect word. Evaluation measures other than the
top choice are useful since, even if the percentage top choice
accuracy is the same for different experimental conditions, a
lower average rank or a higher average log likelihood differ-
ence would produce better performance when additional in-
formation (e.g., from a language model) is introduced. Ta-
ble I shows these three performance measures on the word
list test set for the four types of stop models under discussion.

As can be seen, use of three allophones (initial, medial,
and final) for each stop phoneme gives similar recognition
accuracy to use of nine context-independent stop microseg-
ments. The benchmark system (one HMM per stop phon-

eme) gives the worst performance. Among all the tech-
niques, the one wusing context-dependent release
microsegments produces the best results and does so uni-
formly for all three performance measures.

We have examined in detail individual word errors
made in the benchmark system and in the best system (con-
text-dependent release microsegments). Table II shows the
results of this analysis. The first column lists errors that have
been corrected (marked by v/ in the fourth column) and on
which new errors have been introduced (marked by X).
The phonemic transcription of the recognizer’s top choice is
listed in the second and third columns for the benchmark
system and for the system with context-dependent release
microsegments, respectively. Most of the stop phoneme er-
rors produced by the benchmark system are place of articu-
lation confusions within the same voicing category. The re-
maining stop errors are voicing errors within the same place
of articulation. (There are no stop errors that are wrong for
both voicing and place of articulation.)

The same set of experiments described above was per-
formed on the prose test set. Unlike the results for the word
list, the overall error rates are nearly the same for the four
types of stop models, as shown in Table III.

Table IV is analogous to Table II for the prose test set,
examining the differential errors with respect to the bench-
mark recognizer. Out of a total of 61 word errors, only 9
errors are corrected. Nine additional errors are introduced,
leading to identical recognition accuracies. Note error cor-
rections and new errors have occurred for several test words,
such as this, new, in, hole, and here, which do not contain
initial and final stops and hence are not scored by the micro-
segmental models. Although identical likelihood scores are
obtained by the benchmark models and by the microsegmen-
tal models for the correct word hypothesis, the competing
candidate words are scored differently if they contain initial
or final stops. Also note that four out of nine newly created
errors involve words with stops in consonant clusters (other
than /s/-stop vowel). Stops in these positions have not been
modeled carefully in this study. If a stop in a consonant clus-
ter happens to be initial or final, then it is treated in the same
way as the initial or final stop in a CVC context. This simplis-
tic treatment of stops in consonant clusters appears to be
inadequate.

To improve our confidence in the above results, all the
experiments were repeated using the speech of a second male
speaker. The results are consistent with those of the first
speaker. That is, for the prose test set, various types of stop
models produce similar recognition performance, while, for

TABLE I. Comparative recognition performance of different stop model types on the word list test set (speaker 1).

Performance on word list test set

Type of model for stop consonants Percent correct

Average rank Average diff. of log scores

One model per stop phoneme 68.6
Three allophonic models per stop phoneme 76.6
Microsegments with context-independent releases 75.6
Microsegments with context-dependent releases 80.4

2.30 11.0
1.77 18.7
1.96 14.7
1.61 20.7
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TABLE II. Tokens in the word list test set for which recognition errors were corrected or newly introduced (speaker 1).

Test Words | Top choice using one HMM Top choice using Error correction(y/)
for each stop phoneme context-dependent microsegments | or new error (X )
leaky /qliti/ gleety /liki/ N4
league /1id/ lead /lig/ N4
deep Jtit/ teet /dip/ Vv
keep JtSip/ cheap /kip/ v
teak Jtits/ teach Jtik/ Vv
lit /lid/ lid Jlt/ N
bib /did/ deed /b1b/ V
diddle Jutl/ titdle /didl/ Y
pick /p1t/ pit /pik/ v
pity /pini/ pinnae /p1ti/ o
date /get/ gate /det/ Vv
take /tet/ teth /iek/ Vv
tape Jtik/ teak /tep/ Vv
goat /bot/ boat /got/ Vv
pose /hoz/ hose /poz/ Vv
toad /kod/ code /tod/ Vv
tote /tent/ tent /tot/ Vv
leg /legd/ legged /leg/ Vi
debt /get/ get /det/ N4
debtor /getr/ getter /detr/ Vv
pet /ped/ ped /pev/ v
ten /ten/ tan /ten/ Vv
dies /bajz/ buys /dajz/ V4
fight /faj/ fie /fajt/ v
height /haj/ high /hajt/ ]
pine /hajp/ hype /peip/ v
bet /bed/ bed /bet/ N4
dear /9ir/ gear /dir/ Vv
dug /bag/ bug /dAag/ Vv
dies /bajz/ buys /dajz/ Vv
kill JU L/ chiel /i) V/
Bob /blab/ blob /bab/ v
goat /g0d/ goad /got/ Vv
coat /kod/ code /kot/ Vv
beat /bikt/ beaked /bit/ Vv
cot /kapt/ Copt /kat/ Vv
reap /tik/ reak /rip/ v
spite /skrajb/ scribe /spajt/ Vv
bid /bid/ /bild/ bield X
writer /rajtr/ /rajdr/ rider X
boat /bot/ e /bod/ bode X
gate /qet/ /kit/ keet X
dit /dit/ /dip/ deep X
peep /pip/ /d3ip/ jeep X
leap /lip/ /klip/ clepe X

the word list test set, microsegmental models with context-
dependent releases produce a significantly higher recogni-
tion rate than the other types of stop models. A comparison
of the results is shown in Tables V and VI.

lll. SUMMARY AND DISCUSSION

The modeling technique reported in this paper focuses
on improving discrimination of the six stop phonemes. We
make use of acoustic-phonetic knowledge about the stops to

2744 J. Acoust. Soc. Am., Vol. 87, No. 6, June 1990

obtain composite models that represent a sequence of speech
events. The specific knowledge used for positing the model-
ing approach is as follows: (1) A stop, although highly non-
stationary in its overall extent, nevertheless consists of a few
relatively stationary portions that we call microsegments;
(2) some of these microsegments are shared across different
stop phonemes and across different allophones of the same
phoneme; (3) the release of the voiceless stop in /s/-stop-
vowel context resembles the release of the homorganic
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TABLE III. Comparative recognition performance of different stop model types on the prose test set (speaker 1).

Performance on prose test set

Type of model for stop consonants Percent correct Average rank Average diff. of log scores
One model per stop phoneme 84.6 1.72 31.7
Three allophonic HMMs per stop 84.5 1.72 31.8
Microsegments with context-independent releases 84.6 1.76 30.9
Microsegments with context-dependent releases 84.6 1.72 319

TABLE IV. Tokens in the prose test set for which recognition errors were corrected or newly introduced (speaker 1).

Test Words | Top choice using one HMM | Top choice using microsegments | Error correction(y/)
for each stop phoneme with context-dependent releases or new crror (X )

said /sted/ stead /sed/ Vv
this /bis/ bis /81s/ Vv
new /bu/ boo /nu/ NV
in /ind/ ind /in/ Vv
hook /kuk/ cook /huk/ N
tied /tajnd/ tined /tajd/ Vv
hole /pol/ pall /hol/ Vv
not /banst/ bonnet /nat/ v
an /&nd/ and /en/ Vv
described /daskrajbd/ /astrajd/ astride X
but /bat/ /baret/ barrette X
community /ksmjunati/ /temidati/ timidity X
leapt /lipt/ /1id/ lead X
greatest /gretist/ /gredss/ gradus X
here /hir/ /pir/ peer X
grows /groz/ /broz/ brose X
that /Beet/ /%en/ than X
in /n/ /md/ ind X

TABLE V. Comparative recognition performance of different stop models on the word list test set (speaker 2).

Performance on word list test set

Type of model for stop consonants Percent correct * Average rank Average diff. of log scores
One model per stop phoneme 67.6 2.47 10.1
Three models per stop phoneme 74.3 2.04 14.7
Microsegments with context-independent releases 74.0 1.98 14.3
Microsegments with context-dependent releases 77.9 1.62 18.1
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TABLE VI. Comparative recognition performance of different stop model types on the prose test set (speaker 2).

Performance on prose test set

Type of model for stop consonants

Percent correct

Average rank Average diff. of log scores

One model per phoneme 76.4
Three allophones per phoneme 76.8
Microsegments with context-independent releases 76.9
Microsegments with context-dependent releases 76.5

1.79 30.5
1.82 31.3
1.78 30.5
1.78 31.1

voiced stop; and (4) the spectra of the release microseg-
ments are strongly affected by place of articulation and la-
bialization features of the adjacent vowel.

Based on the above knowledge, we have constructed a
set of microsegmental HMMs for the stops. Use of these
models for word list test data has reduced the error rate for
speaker 1 from 31.4% (benchmark result, obtained by using
one model per stop phoneme) to 19.6% (best result, ob-
tained by using microsegmental models with context-depen-
dent releases). For speaker 2, the corresponding error reduc-
tion is from 32.4% to 22.1%. At present, stops are modeled
microsegmentally only when they are initial, final, or when
they are in /s/-stop-vowel context.

Three significant advantages arise from microsegmental
stop models. First, discriminative focusing: These models
focus on the information-bearing elements of stops, i.e., the
release microsegments. Because the same voice bar model is
used in all three voiced stops, random variation in the voice
bar region cannot adversely affect the discrimination among
the three voiced stop phonemes. The same is true for dis-
crimination among the three voiceless stops, because the
same silence model is used in all three of them. In contrast,
when a single HMM is used to represent the whole stop
phoneme, random differences during the period of voice bar
or silence can mask the discriminative information differen-
tiating place of articulation. This effect is accentuated by the
fact that voice bar or silence typically occupies a significant-
ly longer duration than the release. Second, since the voice
bar model and the silence model are trained jointly from the
three voiced stops and the three voiceless stops, respectively,
the resulting models possess stronger discriminability of the
voicing feature. Third, the spectral similarity of release mi-
crosegments in initial versus final positions allows pooling of
the microsegment tokens, thereby enhancing the robustness
of the models. It is largely due to this pooling that the con-
text-dependent microsegmental approach only minimally
increases the total number of models needed.

Using three allophonic HMMs per stop phoneme also
performs significantly better than using a single model per
stop phoneme: It reduces the word error rate by 21% (aver-
aged over two speakers; see Tables I and V). However, use of
three allophones per stop lacks two of the advantages of mi-
crosegmental models described above: discriminative focus-
ing and reduction of the number of models required. For
example, in contrast to the 15 microsegmental HMMs need-
ed to represent six context-dependent stops, using three allo-
phones per stop, if further conditioned on the front versus
nonfront vowel context, would require 36 HMMs. In addi-
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tion, each allophonic HMM requires a greater number of
states to accommodate the higher complexity time-frequen-
cy patterns of whole stop phonemes. This makes such mod-
els less robust than the microsegmental models when limited
training data are available.

Several speech recognition groups have shown that con-
text-dependent Markov modeling is valuable at the phone-
mic level (Schwartz et al., 1984; Derouault, 1987; Paul and
Martin, 1988; Lee et al., 1989; Deng et al., 1989a,b, 1990).
The present study extends these results from the phonemic
level to the microsegmental level. Although in the present
work we have used only two contexts, i.e., front versus non-
front vowels, a reduction in word error rate of 17% (from
25.2% error to 20.8% error when averaged over two speak-
ers; see Tables I and V) has been achieved.

In contrast to the significant error rate reduction ob-
tained using microsegmental stop models for the word list
test set, no corresponding error rate reduction is obtained for
the prose test set. This result appears to be caused by several
factors. (1) Speakers use different speaking styles when
reading word lists as opposed to prose (Labov, 1972, pp. 80—
85). In the prose reading style, we often observe unreleased
or weakly released final stops. In contrast, the word list style
tends to elicit citation forms, in which most of the stops are
released. Since our microsegment models are trained using
only the strongly released final stops in the training data,
they do not adequately represent the microsegments in unre-
leased or weakly released final stops, which occur frequently
in the prose test set. Although heuristic use of a null transi-
tion (described in Sec. I A) has partially remedied the prob-
lem, this simplistic approach is inadequate for coping with
the complex behavior of the stops in reading style speech.
(2) Medial stops are not modeled microsegmentally in the
current study: They are modeled by one HMM per phon-
eme. (3) Microsegmental modeling of initial and especially
final stops in consonant clusters is inexact (cf. discussion in
Sec. I D). (4) The average rate of occurrence of initial and
final stops in the prose test set is less than 0.5 times per word,
while, in the word list test set, it is greater than 1.0 times per
word. Furthermore, the prose set contains proportionally
fewer monosyllabic words and potential stop consonant
minimal pairs. Any advantage that the microsegmental ap-
proach might have therefore shows up less clearly in the
prose set than in the word list set. (5) The size of the training
set used to train the microsegmental models is less than half
that used to train the whole phoneme models.

We propose the following solutions to the first three
problems listed above. (1) Increase the percentage of prose
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in the microsegment training set. (2) Develop microseg-
mental analyses of the stops in medial position. For fully
articulated intervocalic stops this is straightforward; for
flaps and for stops occurring in clusters, judicious analysis
will be required. (3) Develop a more realistic microsegmen-
tal analysis of stops in final position occurring in consonant
clusters. This analysis should allow for stochastic deletion of
these stops. A better microsegmental analysis of initial stops
in clusters other than /s/-stop-vowel may also be required.

We believe that the large effect observed on the word list
test set is very real and is a potentially useful technique for
improving the acoustic recognition of prose input as well.
The power of this technique for prose should become more
evident as the three solutions outlined above are implemen-
ted. This is the direction of our current research in microseg-
mental modeling.
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