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Abstract

In this paper, we report our development of context-dependent
allophonic hidden Markov models (HMMs) implemented in a

75 000-word speaker-dependent Gaussian-HMM recognizer. The
context explored is the immediate left and/or right adjacent phoneme.
To achieve reliable estimation of the model parameters, phonemes are
grouped into classes based on their expected co-articulatory effects on
neighboring phonemes. Only five separate preceding and following
contexts are identified explicitly for each phoneme. By grouping the
contexts we ensure that they occur frequently enough in the training
data to allow reliable estimation of the parameters of the HMM
representing the context-dependent units. Further improvement in the
estimation reliability is obtained by tying the covariance matrices in
the HMM output distributions across all contexts. Speech recognition
experiments show that when a large amount of data (e.g. over 2500
words) is used to train context-dependent HMMs, the word
recognition error rate is reduced by 33%, compared with the
context-independent HMMs. For smaller amounts of training data the
error reduction becomes less significant.

1. Introduction

Currently, most successful speech recognizers have been built using hidden Markov
models (HMMs) to represent words (Lippmann, Martin & Paul, 1987; Rabiner, Wilpon
& Soong, 1988). While remarkable performance has been demonstrated in small
vocabulary tasks, this word-model based approach cannot be straightforwardly extra-
polated to very large vocabulary applications. The main reason for this is that in-practice
the HMMs representing words cannot be adequately trained with a limited amount of
training data.

An alternative to the word-model based approach is to use speech units smaller than
words. There are two major classes of this subword modeling approach, one based on
the traditional concept of phoneme and the other one based on acoustic segments.
Acoustic segment-based HMM systems (Bahl ez al., 1988; Lee, Soong & Juang, 1988)

* This work was supported by the Natural Sciences and Engineering Research Council of Canada.

0885-2308/90/040345+ 13 $03.00/0 © 1990 Academic Press Limited



346 L. Deng et al.

avoid any preconception of traditional phonetic units, and construct the basic recogni-
tion units entirely on the basis of the acoustic similarity. The units chosen in this way are
acoustically consistent and typically very small and numerous. Thus the influence of one
unit on another is reduced to a minimum. However, one serious drawback of this
approach is the requirement to construct the acoustic lexicon by defining a new baseform
for each word in the vocabulary. This drawback argues against the use of an acoustic
segment-based system for very large vocabulary recognition.

On the other hand, the phonemic HMM system relies upon the linguistic notion of
phonemes corresponding to the segments serving as the minimal differentiators between
words. Although most problems in word-based systems and acoustic segment-based
subword systems are eliminated, performance of phoneme-based systems has been
relatively poor if these segments are considered invariant (Bahl et a/., 1980; Merialdo,
1987; Deng et al., 1988a; Gupta, Lennig & Mermelstein, 1988; Lee & Hon, 1988;
Murveit & Weintraub, 1988). The reason why phonemic models are inadequate is that
they assume a phoneme in any context is equivalent to the same phoneme in other
contexts. However, due to coarticulation (i.e. articulators cannot move instantaneously
from one configuration to another), the acoustic realization of a phoneme is strongly
affected by others, especially by its immediate neighbors.

To capture coarticulatory effects, context-dependent allophonic HMMs have been
proposed and implemented in several HMM-based recognition systems (Schwartz et al.,
1984; Chow et al., 1987; Lee, 1988; Paul & Martin, 1988). In these systems, the most
successful type of context-dependent allophonic HMMs is the phonemic model which
takes into account the immediately left and right phonemic contexts. However, since this
type of method for determining HMM contexts relies upon enumeration of contexts, the
reliability of parameter estimation of the resulting context-dependent HMMs, and their
effectiveness in speech recognition, become inherently limited by the overlap of common
contexts between the training and test data. This overlap is determined principally by the
amount of training data (assuming that training texts are selected with no consideration
of phonetic balance) and by the size of the vocabulary.

Context-dependent allophonic HMM recognizers developed previously typically have
vocabularies consisting of no more than 1000 words. As such, even a small amount of
training data can easily provide sufficient context coverage in the test set (Chow ef al.,
1987; Lee, 1988; Paul & Martin, 1988). This clearly accouts for the success of the
context-dependent allophonic HMMs implemented in these recognizers. However, for
HMM recognizers with much larger vocabularies, the training set typically manifests
only a fraction of the phonological contexts that occur in the test data. (The statistics we
collected which will be shown in Section 4 indicates that about one-half of triphones in
test data are not observable in a set of typical training data containing as many as 1500
words.) Due mainly to this reason, the 10 000-word HMM recognizer reported by
Derouault (1987) showed somewhat discouraging results on the use of the enumeration-
based context-dependent allophonic HMMs (only 9-:3% word error reduction).

In this paper, we report encouraging results we obtained from context-dependent
allophonic HMMs implemented in a 75000-word Gaussian HMM recognizer. The
significant improvement we have achieved in recognition accuracy over the context-
independent HMM recognizer is attributed to two techniques we have developed and
employed. First, in defining allophonic HMMs, we merge similar contexts together
according to acoustic-phonetic knowledge. This context merging results in a great
reduction in the number of models to be trained, and consequently a large increase in the
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training data for each model. The second technique is to impose the constraint that the
covariance matrices of allophonic HMMs are identical (tying) for all contexts of the
phoneme. The tying makes the estimation of the covariance matrix more reliable, and
significantly reduces the amount of training data required.

This paper is organized as follows. In Section 2, we present the context-dependent
allophonic units developed and employed in this work. In Section 3, we describe the
Baum—Welch training procedure employed to construct the HMMs representing these
units. An analysis on the overlap of common contexts between training and test data is
shown in Section 4. The result of this analysis suggests a strong need for merging similar
contexts. In Section 5, the effectiveness of the context-dependent allophonic HMMs is
demonstrated in comparison with context-independent phonemic HMMs in a 75 000-
word speaker-dependent isolated-word recognizer. Finally, we discuss and summarize
our results in Section 6.

2. Hidden Markov models representing phonemes and allophones

Before describing the context-dependent allophonic HMMs, we first review the context-
independent phonemic HMMs implemented in the baseline recognition system de-
veloped previously (Deng et al., 1988a; Gupta, Lennig & Mermelstein, 1988). Briefly, the
HMM representing a phoneme is based on an underlying left-to-right Markov chain
starting in state 1 and ending in state N. N ranges from 4 to 10 for the different
phonemes. Transitions between phonemes are represented by a null transition from the
last state of one phonemic HMM to the first state of another phonemic HMM. With
each transition in the Markov chain, we associate a unimodal multivariate Gaussian
distribution of speech feature vectors. A context-independent HMM for a phoneme is
trained with all tokens of this phoneme and invoked to evaluate any instance of this
phoneme during recognition. Although such a context-independent HMM can be
trained reliably due to its frequent occurrence in the training data, it is often inadequate
because of the well-known coarticulation effects in speech.

Context-dependent allophonic HMMs, which model a phoneme in a particular
context, are designed to circumvent this inadequacy. In this study, a context refers to the
immediate left and/or right adjacent phonemes. A one-sided allophonic HMM for a
phoneme is the allophonic HMM trained with the tokens of this phoneme conditioned
on the left or the right adjacent phoneme, and invoked for recognition only when this
phoneme occurs in the same context. By this definition, two allophones of the same
phoneme having different left or right context are considered distinct. For notational
convenience, we use l/r-allophone to denote the one-sided allophone conditioned on
either the left or the right context. Likewise, a two-sided allophonic HMM is the
allophonic HMM having the context of the phoneme defined as both the left and the
right adjacent phonemes. The two-sided allophone is denoted Ir-allophone.

The allophonic HMMs defined above are powerful representational tools since they
capture the most direct coarticulation effects in speech. However, if the left or/and the
right context for these models is taken to be a specific phoneme, many of these models,
especially the two-sided HMMs, would be poorly trained. By allowing many more
models, the number of occurrences of the allophone in the training data used to train
each model is reduced.

One approach to overcoming this difficulty is based on the observation that some
phonemes have very similar effects on the adjacent phonemes. For instance, consonants
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sharing a place of articulation feature tend to affect the successive vowel in a similar way;
and vowels pronounced with a similar tongue position tend to have similar effects on
left-neighboring consonants. A systematic application of this type of knowledge allows
construction of a set of merged contexts which are phonetically meaningful. The
resulting contexts of a phoneme after the context merging are shown below.

The merged contexts for a vowel are: (1) word boundary, breath, or /h/; (2) labial
consonants; (3) dental, alveolar, and palatal consonants; (4) velar consonants; (5)
another vowel.

The merged contexts of a consonant are: (1) word boundary, breath; (2) palatal
vowels, /j/; (3) rounded vowels, /w/; (4) plain vowels; (5) another consonant, except /j/ or
[w/.

To construct one-sided HMMs using these merged contexts, we use the preceding
phoneme class for a vowel and the following phoneme class for a consonant. In this way,
each phoneme is represented by five context-dependent one-sided allophonic HMMs.
Note that due to this directional definition of context dependence, a diphthong can be
easily treated as one of the vowel categories when encountered as a context. In
constructing two-sided allophonic HMMs for each phoneme (vowel or consonant), a
combination of the above five contexts in both left and right gives rise to 25 two-sided
allophonic contexts. After the merger of contexts, we use L/R-allophone and LR-
allophone to denote one-sided and two-sided allophones, respectively.

Despite the reduction in contextual categories described above, there are still
numerous allophonic HMMs to be trained for each phoneme. This is especially true for
the LR-allophonic HMMs, hence it is desirable to employ smoothing techniques to
avoid possibly unreliable estimates of the HMM parameters. Two such techniques have
been used. First, the output covariance matrices of all LR-allophonic or L/R-allophonic
HMMs for a phoneme are tied and trained as a single covariance matrix of the phoneme.
Because Gaussian HMMs are in general more sensitive to estimation errors of the
output means than to those of the covariance matrices (Rabiner et al., 1985), making the
covariance matrix independent of context is not expected to degrade the ability of the
model to represent context-dependent effect. Nevertheless, tying naturally leads to
estimation of covariance matrices in the allophonic HMM which are as reliable as those
in phonemic HMM. Second, to insure reliable estimation of the Gaussian mean
parameters in the allophonic HMMs, they are interpolated with those in the phonemic
HMM which have been reliably trained. In the next section, we describe implementation
details of these smoothing techniques, together with the general procedure for training
allophonic HMMs.

3. Training allophonic hidden Markov models

A set of C context-dependent Gaussian HMMs are used to represent C context-
dependent allophones of a phoneme. In the present study, C is 5 for L/R-allophonic
context, and 25 for LR-allophonic context. These HMMs are characterized by the
following parameters:

(1) [@),ij=12,. .. ,Nandc=1,...,C, aset of state transition matrices of the Markov
chains each with N states. Here a{f) is the transition probability from state i to state
J for the specific context c. For the left-to-right HMM, we assume a{’=0, for j<i
and j>i+2.
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(2) An output probability density for the observation vector defined on each state
transition in the Markov chain for each specific context. The density is assumed to
be a multivariate Gaussian of the form:

b{(0)=N[0,0).x]

where O is the observation vector, ®f.l.‘) is the mean vector distinct for each
transition from state i to j, and specific for each context ¢. The covariance matrix
%, is assumed to depend only on the phoneme, common to all allophones of that
phoneme and to all state transitions.

The above parameters are estimated from training data by the well-known Baum-—
Welch re-estimation algorithm, an iterative procedure for maximum likelihood estima-
tion of HMM parameters (Baum, 1972). Since the re-estimation formulas and their
derivation for context-dependent Gaussian HMMs with tied parameters are still quite
similar to those for standard Gaussian HMMs (Liporace, 1982), we only give the final
formulas and note the differences.

A transition probability from state i to j in the HMM representing a phoneme in
context ¢ is re-estimated by
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Note that the tying of the covariance matrices across all contexts and all state
transitions is carried out by summing up the accumulated quantities in both numerator
and denominator over i, j and ¢ in Equation (4).

The conditional probability y%(i,j,c) [defined by Equation (2)] which is involved in
Equations (1), (3) and (4) can be efficiently calculated by using standard forward and
backward probabilities (Baum, 1972; Bahl, Jelinek & Mercer, 1983; Levinson, Rabiner
& Sondhi, 1983).

The Baum—Welch re-estimation formulas given above assume that the phonetic
segment boundaries are known for each training token. In practice, however, the
phonetic segment boundaries are often quite inaccurate. To overcome this difficulty, an
automatic training procedure is required which allows adjustments of the phoneme
segment boundaries. We implemented such a procedure which considers all possible
phonetic segments in a word. The procedure is efficiently implemented by concatenating
a series of allophonic HMMs, which correspond to the phonemic transcription of the
word and respect their immediate left and/or right phonetic contexts, as a training token.
The HMM network constructed in this way to represent words from allophones can
then be trained by directly applying the re-estimation formulas in Equations (1), (3) and
(4). When common allophones are present in a word, the HMM parameters of the
common allophones are tied in applying the re-estimation formulas.

As explained before, we obtain reliable estimates for the covariance matrices by tying
them across all contexts for a given phoneme. To obtain reliable estimates for the mean
vectors, we used the following formula to linearly interpolate the mean vectors re-
estimated at the m-th iteration with those at the previous iteration:

O™ 1O™ + (1 — )@, )

where the interpolation weight A is a function of the expected number of frames
(determined by the Baum-Welch algorithm) used to estimate the ®™. Only a fixed
number of iterations were carried out, which was typically long before the convergence
of the Baum—Welch algorithm was reached. Baum and Sell (1968) showed that such an
interpolation operation retains the essential property of the Baum-Welch algorithm that
each iteration guarantees an increase in the likelihood on the training data. In all the
experiments reported in this paper, context-independent HMMs are used as initial
models in training context-dependent HMMs. Therefore, if tokens for a particular
context are not present or occur very rarely, then Equation (5) essentially becomes a
smoothing of the re-estimate of a context-dependent mean vector by that of a context-
independent mean vector.

4. Analysis of context coverage

As pointed out earlier, for the enumeration-based approach to context-dependent
phonetic modeling which we explore here, the overlap of common contexts between the
training and test sets is a major factor determining the success of the approach. Before
we present experimental evaluation of the context-dependent allophonic HMMs, we
show in this section the results of an analysis on the context coverage. The purpose of
this analysis is to demonstrate the necessity of merging the allophonic contexts as
described in Section 2, and to allow for quantitative interpretations of the dependence of
recognition accuracy on the training size.
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The texts employed to carry out the context coverage analysis are paragraphs
randomly sampled from four novels. The training and test data are disjoint, and consist
of 3880 and 1090 words, respectively.

Table I shows quantitative measures of the allophone coverage between the 1090-
word test set and the training sets comprising 717, 1532, 2343, 3098 and 3880 words,
respectively. The I/r-allophone and Ir-allophone discussed here are those defined in
Section 2 before context merging is considered. The context coverage is measured by the
percentage of distinct I/r-allophones or Ir-allophones in the test set which are present
with various occurrence frequencies in the training set. The total number of distinct 1/r-
allophones or Ir-allophones in the 1090-word test set is 612 and 1500, respectively. The
percentage values outside the parentheses are those measures which do not take into
account the actual occurrence frequencies of the allophones in the test data (they simply
provide the weight one to an allophone if the allophone is in the test data and provide the
weight zero if the allophone is not in the test data), while the percentage values inside the
parentheses are those which weight each allophone by such frequencies. Both sets of
values are meaningful since in actual speech recognition experiments not only the
context-dependent model representing the test word, but also the models representing
practically every word in the vocabulary, are to be used to match the unknown input
acoustic observations. Therefore, although the degree of context overlap appears
significantly higher by the measure where the allophone occurrence frequency weighting
is used, the effect of such a higher degree of context overlap would not totally manifest
itself in speech recognition experiments.

As can be seen from the table, a large percentage of allophones in the test set occur
with very low frequencies even in large training sets. This is especially true for lIr-
allophones. Apparently, if distinct HMMs were used to represent all of these allophones,
their parameters could not be reliably estimated.

This serious problem motivates the merging of contexts. Table II demonstrates a
significantly improved context coverage between training and test sets for L/R-
allophones or LR-allophones after the context merging described in Section 2. For

TaBLE I. Percentage of distinct one-sided and two-sided allophones (both before context merge)
in a 1090-word test set occurring with various frequencies in disjoint training sets with varying
size. The percentage values in the parentheses are obtained with the weighting of each
allophone by the number of its occurrences in the test set

Training size (No. of words)

Type of Occurrences

allophones in training data 717 1532 2343 3098 3880

I/r-allophones 0 27% (7%) 14% (3%) 9% (1:3%) 7% (1'1%) 5% (0-8%)
1 17% (1:0%) 12% (0-8%) 11% (0:6%) 8% (0:3%) 6% (0-3%)
2to 5 34% (15%)  32% (8%)  25% (5%)  22% (4%) 19% (3%)
6to 10 10% (15%) 19% (11%) 17% (8%)  20% (5%)  21% (4%)
more than 10 12% (61%)  23% (78%) 37% (85%) 43% (90%) 49% (92%)

Ir-allophones 0 56% (23%) 41% (15%) 33% (11%) 28% (9%)  23% (7%)
1 20% (12%)  19% (8%) 19% (7%) 16% (6%) 17% (6%)
2t0 5 18% (19%) 27% (16%) 29% (15%) 30% (15%) 30% (15%)
6to 10 3% (10%) 7% (8%) 10% (9%) 13% (9%) 14% (9%)

more than 10 3% (36%) 6% (53%) 9% (58%) 12% (61%) 16% (63%)
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TaBLE II. Percentage of distinct one-sided and two-sided allophones (both after context merge)
in a 1090-word test set occurring with various frequencies in disjoint training sets with varying
size. The percentage values in the parentheses are obtained with the weighting of each
context-merged allophone by the number of its occurrences in the test set

Training size (No. of words)

Type of Occurrences

allophones in training data 717 1532 2343 3098 3880

L/R-allophones 0 7% (0-4%) 3% (0:3%) 2% (02%) 2% (0.2%) 1% (0:1%)
1 7% (1:3%) 1% (0:9%) 2% (04%) 2% (0:2%) 1% (0:1%)
2to 5 27% (4%) 17% (3%) 9% (1:3%) 5% (0:9%) 4% (0-9%)
6to 10 14% (9%) 12% (12%) 12% (4%) 12% (4%) 9% (3%)
more than 10 44% (85%)  66% (85%)  75% (95%) 80% (95%) 85% (96%)

LR-allophones 0 20% (4%) 11% (1:0%) 8% (0-5%) 6% (0-4%) 4% (0-4%)
1 18% (5%) 9% (2%) 7% (0:5%) 6% (0:7%) 6% (0-7%)
2to 5 32% (17%)  32% (9%)  25% (6%) 19% (4%) 16% (3%)
6to 10 13% (13%) 7% (9%)  20% (8%) 19% (6%) 16% (5%)

more than 10 16% (61%) 31% (79%) 41% (85%) 49% (89%) 58% (92%)

example, the percentage of distinct L/R-allophones in the test set which occur more than
10 times in the training set is about twice of that of I/r-allophones, and the percentage is
increased to about four-fold from Ir-allophones to LR-allophones (compared to Table
I). The total number of distinct L/R-allophones and LR-allophones in the test set is
reduced from 612 to 194, and from 1500 to 468, respectively. It is clear that for most of
the L/R-allophones and LR-allophones contained in test data, the corresponding
HMMs will be reliable due to the high context coverage. This fact, combined with the
higher accuracy of allophonic HMMs in capturing context-dependent acoustic variation
of phonemes, would lead to improved recognition performance. This expectation has
been confirmed by the experiments reported next.

5. Speech recognition experiments

5.1. Overview of the recognizer and speech data

The allophonic HMMs discussed in previous sections were evaluated in a speaker-
dependent isolated-word recognizer with a 75 000-word English vocabulary. Overviews
of the recognizer have been published previously (Deng et al., 1988a; Gupta, Lennig &
Mermelstein, 1988), and will be only briefly reviewed here. The recognition process
consists of word-endpoint detection, a fast search algorithm to generate a list of most
likely word choices (300 choices on average), the computation of exact likelihoods for
these choices, and the use of the uniform language model (i.e. all words are considered a
priori equally probable) or the trigram language model trained with a 57-million word
text. The language model has a perplexity of about 900. The context-dependent
allophonic HMMs described in this paper, as well as phonemic HMMs for comparison
purposes, were used only at the exact likelihood scoring stage. Since the phonetic
transcription of each candidate word generated by the fast search algorithm is known to
the recognizer, so is the complete phonetic context of the constituent phones. This allows
correct selection of one of the allophonic HMMs for each phoneme to score the
unknown observation sequence.
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Speech is recorded in a quiet sound booth using a Crown PZM microphone, low-pass
filtered at 7 kHz, and sampled at 16 kHz. A Hamming window with a width of 25:6 ms is
applied at 10 ms intervals. For each Hamming window, a 15-dimensional feature vector
is computed. The vector consists of seven mel-frequency cepstral coefficients (Davis &
Mermelstein, 1980), augmented by their differences over time and by the difference of
loudness over time (Gupta, Lennig & Mermelstein, 1988).

Training and test data from three speakers, one male and two females, comprise
natural-language sentences read from texts selected randomly from magazines, books
and newspapers. The number of words (training and test data) recorded from each
speaker vary between 2000 and 5000.

5.2. Recognition results

Table III shows the recognition accuracy obtained by the context-independent phonemic
and the context-dependent allophonic HMM-based, speaker-dependent recognizers.
Listed in the table are the recognition accuracies measured by the percentage of test
words correctly identified by the recognizer as the top word choice. Homophone
confusions are counted as errors when the trigram language model is used, but not when
the uniform language model is used. Results are given for three speakers. For speaker
CA, the training and the test data are those for the context-coverage analysis described
in Section 4.

The benchmark system with phonemic HMMs has been described previously (Deng et
al., 1988a; Gupta, Lennig & Mermelstein, 1988). The L/R-allophonic and LR-allo-
phonic HMMs have been described in the preceding sections of this paper. The results
shown in Table III indicate that allophonic HMMs consistently outperform phonemic
HMMs. The performance improvement is particularly noticeable when there are a large
amount of training data (e.g. over 2500 words). In this case, averaged over speakers CA
and AM, L/R-allophonic HMMs reduce recognition errors (compared with phonemic
HMDMs) by 18% for the use of uniform language model, and 26% for the use of the

TasLE II1. Comparison of recognition rates of the context-dependent allophonic and
context-independent phonemic HMM recognizers. Results are given for the use of uniform
language model and trigram language model separately

Phonemic HMMs L/R-allophonic HMMs LR-allophonic HMMs

Speaker Training
(test size) size uniform trigram uniform trigram uniform trigram
CA (female) 717 67:9% 80-6% 70-0% 83-5% 69-7% 82:5%
(1090 words) 1532 70-2% 85:0% 75:0% 88:5% 781% 88-:0%
2347 70:6% 86:8% 75:5% 89:1% 80-9% 90-4%
3098 70-8% 86:8% 76:0% 89:0% 82:7% 91:3%
3880 70-7% 86:7% 76:1% 89:1% 83:0% 91:9%
AM (male) 1100 54-4% 78:0% 54:0% 78:0% 53-4% 77:0%
(698 words) 2039 68-2% 81:0% 73:0% 84:0% 72:0% 83-0%
2742 68:7% 81:9% 74-2% 88:1% 76:1% 86-4%
MA (female) 1600 79-0% 90-4% 83:-1% 91:6% 83-8% 89-6%

(586 words)
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trigram language model. LR-allophonic HMMs reduce the error rate further, by 35%
and 33% for the two language models.

For speakers CA and AM, varying amounts of training data have been used in an
attempt to investigate the effects of the extent of context coverage on the recognition
accuracy. The context coverage is mainly determined by the training size (see Table II).
The effects, demonstrated by the results in Table III, can be summarized as follows. An
increase in the training size and consequently in the degree of context coverage tends to
improve the recognition accuracy for both phonemic and allophonic HMMs. The
improvement tends to saturate a certain training size. The saturation level is the lowest
for phonemic HMMs, intermediate for L/R-allophonic HMMs, and the highest for LR-
allophonic HMMs.

It is noted from Table III that in some cases L/R-allophonic HMMs produce higher
recognition accuracy than LR-allophonic HMMs. This is unexpected since LR-allopho-
nic HMMs in general capture more detailed coarticulatory information than do L/R-
allophonic HMMs. We suspect that the poorer recognition accuracy for LR-allophonic
HMMs results from unreliable estimation of mean vectors in certain LR-allophonic
HMMs, since there are four times more of such mean vectors than in an L/R-allophonic
HMM. This conjecture is consistent with the fact that LR-allophonic HMMs perform
worse than L/R-allophonic HMMs when the trigram language model is used, although
the opposite is true with the uniform language model (see the results for speaker MA,
and for speaker AM with 2742 training words in Table III). In the present course of
study, we generally observed that model robustness has to be ensured to take full
advantage of any powerful language model, while detailed and more accurate models
(despite a lesser degree of robustness) manifest more strongly when no language models
are used.

The interpolation method described by Equation (5) in Section 3 has been used to
smooth the estimates of the mean vectors in training LR-allophonic HMMs. This
experiment was carried out only for speaker AM. The results however, show that the
recognition accuracy obtained by smoothing the mean vectors is about the same as
without the smoothing.

6. Discussion and summary

For HMM-based large vocabulary speech recognition, representing phonemic units by
HMMs is attractive for many reasons, the principal one being that the HMMs can be
trained adequately with relatively small amounts of speech data. However, since
phonemic classification is generally not consistent with acoustic distinction, the direct
phonemic modeling approach has serious limitations. Context-dependent allophonic
modeling is currently the most promising way in overcoming these limitations.

The context-dependent allophonic modeling approaches proposed so far can be
classified into two main categories. The first, the structure-based approach, attempts to
use innovative designs of the HMM structure according to the well-established acoustic-
phonetic knowledge about speech. Use of such knowledge permits construction of more
faithful representation of speech by HMMs, yet does not generally reduce the reliability
of the representation. Although improvements in recognition accuracy for particular
classes of phonemes have been made (Deng et al., 1988a; Deng, Lennig & Mermelstein,
1989; Deng et al., 1989 Deng, Lennig & Mermelstein, 1990) the ultimate large-scale
success of this approach requires more thorough understanding of areas of phonetics
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relevant to speech recognition and more skilful incorporation of the knowledge into the
statistical modeling framework.

The second class of context-dependent allophonic modeling approaches, of which the
present study belongs, is based on enumerating the phonetic contexts which are
considered important in contributing to acoustic distinctions. Since the immediate
neighboring phonemes tend to have the strongest coarticulatory effects on the phoneme
under consideration, Ir-allophones and 1/r-allophones are often used. One obvious
problem for this type of context-dependent modeling is that as more contexts are
enumerated, the number of context-dependent models is increased as well, thus either
making the models trained from a fixed amount of training data potentially less reliable,
or practically reverting to less accurate context-independent models by any types of
smoothing techniques.

To overcome this problem, we have developed two novel techniques in implementing
context-dependent phonetic HMMs in a very large vocabulary speech recognizer. The
first technique is to merge phonological contexts, guided by the acoustic-phonetic
knowledge about the similarity in coarticulatory effects of different phonemes on their
adjacent phonemes. We have presented a detailed analysis on the overlap of common
contexts in the training and in the test data. The results of this analysis provide a
quantitative assessment on the improved reliability of the allophonic HMMs achieved
by context merging.

The second technique to improve reliability of context-dependent allophonic HMMs
is to smooth the covariance matrices by tying them in Gaussian HMMs across all
allophones. We show that after the tying, additional smoothing on the mean vectors in
allophonic HMMs by linearly interpolating them with those in context-independent
HMDMs becomes unnecessary. The possibility of smoothing HMM output distributions
by tying covariance matrices is an important advantage of the Gaussian HMM over the
HMM with non-parametric discrete output distributions. In the latter case, the only
viable smoothing method is the interpolation between the context-dependent and
context-independent HMM parameters (Schwartz et al., 1984). In our previous experi-
ments (unpublished), we carried this interpolation method through all parameters in
Gaussian HMMs, including the covariance matrices. We achieved no error reduction
using the context-dependent HMMs obtained in this way. Therefore, one of the main
contributions of this study is to demonstrate the effectiveness of tying covariance
matrices across contexts in constructing context-dependent Gaussian HMMs.

Significant improvement in recognition accuracy has been achieved using allophonic
HMMs constructed by the above two techniques. The error rate reduction is 26% and
33% for the use of L/R-allophonic and LR-allophonic HMMs, respectively, when the
training data consist of over 2500 words. This size of training data manifests over 90%
and 70% overlap (occurrence frequencies more than five) of L/R-allophonic and LR-
allophonic contexts with the test data (calculated from the statistics shown in Table II).
For smaller amounts of training data and hence lower context overlap, the error
reductions become progressively smaller.

Further improvements in recognition accuracy can be expected beyond the work
presented here. First, our method for merging contexts is based on intuition grounded in
phonetic knowledge, and may be inadequate in terms of optimizing speech recognition
performance. It is desirable to develop context-merging procedures which are aimed
directly at improving phonetic distinction. The automatic clustering algorithm devised
by Lee (1988) for a medium-sized vocabulary speech recognizer is not applicable to very
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large vocabulary speech recognition since the algorithm requires each allophone to be
present in the training data. In our vocabulary containing 86 000 words and 92 000
phonemic transcriptions, more than 17 000 triphones have been counted. To apply the
automatic algorithm for clustering these triphones in a speaker-dependent system, we
would probably need speech material from the amount of natural text equivalent to a
full-length novel. Second, due to the merge of contexts, the acoustic variability within
each merged context would necessarily be greater than that without the merge. This
suggests that the unimodal Gaussian assumption for the output distributions in context-
dependent HMMs may be inappropriate. Use of Gaussian mixtures for the output.
distributions may result in more accurate HMMs. Finally, we intend to combine the
structure-based and the enumeration-based context-dependent modeling approaches in
order to achieve a better compromise between the model accuracy and the model
reliability.
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