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In this article, a fast search algorithm is presented for generating word hypotheses for a 75 000-
word vocabulary, speaker-trained, isolated word recognizer. The algorithm is envisioned as the
first pass of a total recognition system generating a small number of hypotheses with rough
likelihood estimates, to be followed by more detailed hypothesis evaluation. The possible word
choices are restricted by estimating the number of syllables in the unknown word using a
hidden Markov model (HMM) for syllables. A heuristic search algorithm then searches
through a sequence of syllable networks to find the most likely word candidates. Arcs in the
syllable network correspond to phonemes. The assumption that the likelihoods of these
phoneme arcs are independent of the phonetic context allows us to convert the search through
a large tree into a search through a much smaller network or graph. The computational
requirements are reduced by roughly a factor of 70 compared to estimating the exact likelihood
scores for the 75 000 words. This fast search algorithm is called the syllabic graph search. The
recognition accuracy obtained for the syllabic graph search approaches that obtained using the

exact likelihood scores for the phoneme sequences.

PACS numbers: 43.72.Ne

INTRODUCTION

The goal of our 75 000-word recognizer is to transcribe
text spoken as a sequence of isolated words. For each spoken
word, the recognizer uses acoustic information and rough
likelihoods in a fast search algorithm to narrow the possible
word hypotheses from the 75 000 words in the total vocabu-
lary to a small list. It then refines the list by computing an
exact likelihood score for each hypothesized word. The ex-
act likelihood scores take into account acoustic information,
but not the syntactic and semantic characteristics of English.
To take these into account, the exact likelihoods are further
refined with the aid of a statistical language model to gener-
ate the most likely sequence of words. In this article, our
focus is on generating the inital short hypothesis list of the
most likely words.

A simplistic approach to large vocabulary recognition
would compare the unknown (word to be recognized)
against all possible phonemic transcriptions for all the words
in the vocabulary. To score the 75 000 vocabulary words in
real time would require hardware with computing capability
on the order of hundreds of millions of floating point opera-
tions per second. The cost of the hardware to provide such
computing capability would be prohibitive. To reduce the
number of candidates for detailed comparison, we require an ‘
algorithm to perform a fast search, reducing significantly the
size of the list for subsequent detailed search.

The stack decoding algorithm (Jelinek, 1976) may be
employed to achieve a heuristic search. Bahl et al. (1983)
have used the stack decoding algorithm to search a word tree
defined by a language model with a vocabulary size of 5000
words." In contrast, we apply the stack algorithm to search a
lexical tree where each branch of the tree is labeled with a
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phoneme and is considered to be a priori equally likely. The
implementation of the stack decoding algorithm used by
Bahl et al. is computationally expensive since it performs a
heuristic search through a tree that contains all possible val-
id pronunciations. The major computational load is incurred
in computing the branch likelihoods to extend the path on
top of the stack.

The phoneme tree for our 75 000-word recognizer is
quite large, containing over 445 000 branches. Significant
computational savings result if we modify the strategy to
search through a much smaller graph? instead of a tree and
assume that the likelihood of every arc in the graph is inde-
pendent of its phonetic context. The rough likelihood of any
path in the graph can be rapidly computed from the likeli-
hoods of the arcs constituting the path. This permits limiting
the search to a graph having less than 2000 arcs. We call this
search algorithm the sy/labic graph search.

Additional computational savings result from restrict-
ing the search to a subset of the entire vocabulary. This is
accomplished by first estimating the number of syllables in
the word and then restricting the search to words with the
required number of syllables.

The article is organized as follows. We first give an over-
view of the word recognition strategy in Sec. I. Sections II-
VIII describe various components of the word recognition
system. Section II outlines the 75 000-word lexicon. The
training and test sets employed for evaluating the recogni-
tion algorithm are described in Sec. I11. In Sec. IV we give
details of the acoustic parameters used for recognition. In
Sec. V the syllable networks used in the syllabic graph search
are developed in detail. Section VI describes the algorithm
for estimating the number of syllables in the word. Section
VII outlines the hidden Markov models (HMMs) used in
the syllabic graph search algorithm. Section VIII gives de-
tails of the syllabic graph search for finding the most likely
word candidates.

© 1988 Acoustical Society of America 2007



I. OVERVIEW OF THE 75 000-WORD RECOGNIZER

A block diagram of the recognition system is shown in
Fig. 1. Recognition is performed in four stages.

The first stage determines the end points of the words
using C, (see Sec. IV for details on C,). The temporal se-
quence of feature vectors between these two end points is
employed by the succeeding stages to recognize the un-
known. Explicit detection of the end points limits the com-
putations required for the following stages, as opposed to
implicit end-point detection, where the best match is evalu-
ated between broader limits, possibly allowing silent seg-
ments to be appended to either end. The number of end-point
detection errors is less than 1% and has only a minimal effect
on the performance of the recognizer.

The second stage of recognition generates a number of
hypotheses for the syllable count (total number of syllables)
in the unknown. This algorithm is described in more detail in
Sec. VI. Estimation of the number of syllables in the word
allows us to search a subset of our vocabulary corresponding
to the words with the estimated syllable count. For each
estimate K of the syllable count, we form a graph consisting
ofa concatenation of K distinct syllable networks (see Sec. V
for details on the syllable networks). Each arc of the graph
corresponds to one of 44 allophone models listed in Appen-
dix A, or to a null transition. Every phoneme sequence in the
lexicon corresponding to a K-syllable word has a path
through this graph. This graph is called the syllabic graph of
count K. The syllabic graph is used for rapid scoring of par-
tial phoneme strings.

The third stage of recognition is a syllabic graph search
(the focus of our article) that computes the sequence of most
likely phoneme strings through the syllabic graph. The syl-
labic graph search performs a fast search through all possible
paths within the syllabic graph using a variation of the stack
algorithm (Jelinek, 1976), or the A * algorithm as it is termed
in the artificial intelligence literature (Nilsson, 1980). A
partial path is put on the stack only if it corresponds to a
node of the lexical tree. The branches of the lexical tree cor-
respond to phonemes and the leaves of the tree correspond to
words in the vocabulary. With each branch in the lexical tree
we associate tags indicating the possible syllable counts

parameter
estimation

15-dimensional parameter vector

speech
input

zeroth cepstrum static, dynamic

list of
tast graph | phoneme

|
search sequence
algorithm |4 h

allophone’
modeis

language
model

end-point

syliable count
detection

estimation

exact
likelihood
score

reordered
hypothesis
list

linguistic
decoding

maximum
likelihood
text

FIG. 1. Block diagram of the large vocabulary recognition system.
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through that branch and the syllable position for the branch.
The syllable position indicates the position of the syllable in
the word with which the branch is associated. The lexical
tree has approximately 445 000 branches. An example of a
lexical tree representing only five words is shown in Fig. 2.
The output of the syllabic graph search is a list of the N most
likely lexically valid phoneme strings and their associated
rough likelihoods. The syllabic graph search algorithm is
described in detail in Sec. VIIL.

The fourth stage of recognition computes the exact like-
lihood scores for the phoneme strings generated by the syl-
labic graph search and reorders the phoneme strings based
on these scores. The exact likelihood scores provide im-
proved recognition performance over the rough likelihoods
computed by the syllabic graph search algorithm. Exact like-
lihood computation for the hypotheses found most likely by
the syllabic graph search requires minimal additional com-
puting.

Although we have explored the use of language models
to improve the recognition rates, no language model is in-
cluded in the experiments reported in this article. The statis-
tical language model we have implemented is based on a
trigram language model (Jelinek, 1985). The trigram lan-
guage model has been shown to perform quite well for a
vocabulary size of up to 20 000 words (Averbuch et al.,
1987). The word trigram probabilities are estimated using a
large text corpus. In our system, trigram probabilities are
then used to find the most likely word sequence from the
word lattice generated by the first four stages of recognition.
To focus on acoustic recognition, all the 75 000 words in the
lexicon are considered a priori equiprobable in the experi-
ments reported in this article.

tree

branches i,(1,2),[1]

1,(2),[2]
1,(2),[2] n,(2),[2]
n,(2),[2
___-": eating
o o]
begin began

leaves of the tree

FIG. 2. Example of a lexical tree containing five words: begin, began, by,
eat, eating. Each branch has a phoneme label, a (possible syllable counts
tag), and a [syllable position tag] associated with it. The possible syllable
counts tag shows all the possible syllable counts for words through the
branch. The syllable position tag shows the position of the syllable in the
word with which the branch is associated.
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The accuracy of the recognizer is evaluated using two
quantitative measures. One criterion is the percent of words
for which the top word choice is correct.® The second crite-
rion is the average rank of the correct word in the ordered list
of word hypotheses.

Il. THE 75 000-WORD LEXICON

All recognition experiments and lexical statistics report-
ed here are based on a lexicon of 76 211 orthographically
distinct words. These words correspond to the contents of
Merriam Webster’s Seventh Collegiate Dictionary (1965;
henceforth, W7), together with most of the words in the
Brown Corpus (Francis and Kucera, 1979) not in W7, plus
approximately 400 common first names of people, and all of
the words in the training and test sets used for the recogni-
tion experiments.

Words are distinguished orthographically. For exam-
ple, book and books are considered two different words in the
vocabulary. On the other hand, bow(n)/bo/ and bow(v)
/baw/ are considered to be the same word. Note that W7
does not list regular inflected forms. The frequently occur-
ring inflected words in our lexicon have been taken from the
Brown Corpus.

Because some words have multiple pronunciations, the
76 211 distinct words in the lexicon have a total of 126 445
distinct phonemic transcriptions; 73 554 words have at least
one phonemic transcription that is different from all other
words and 72 709 words have no homophone confusions at
all among their phonemic transcriptions. We refer nominal-
ly to our vocabulary size as 75 000 even though any of the
numbers 72 709, 73 554, 76 211, and 126 445 could be justi-
fied according to the various possible definitions.

lll. TRAINING AND TEST SETS

The training and test sets consist of different sentences
read in a quiet room by the same speaker. All of the training
and test texts are read with pauses of at least 150 ms between
the words. The texts were selected arbitrarily from maga-
zines, office correspondence, books, and newspaper articles.
Sample sentences from the test set are shown in Appendix B.
Some additional training words are included to provide ex-
tra tokens of phonemes in consonant clusters and in CVC
context, where C stands for one of the consonants
/ptkbdgrl/. The training set consists of approximately 850
word tokens corresponding to approximately 10 min of
speech (not including the silence intervals between words). ,

The training and test texts were spoken by two male
native English speakers. One speaker’s phonetic and phono-
logical patterns are characteristic of the Philadelphia speech
community, while the other’s are characteristic of Montreal
speech. Both speakers are researchers associated with our
speech recognition project.

IV. ACOUSTIC FEATURES

Speech is captured using a Crown PZM microphone,
low-pass filtered at 7.1 kHz and sampled at 16 kHz. A 15-
dimensional feature vector is computed every 10 ms from the

2009 J. Acoust. Soc. Am., Vol. 84, No. 6, December 1988

sampled speech waveform using a 25.6-ms overlapped win-
dow. The 15-dimensional feature vector consists of seven
mel-based static cepstrum coefficients (C,,...,C;) (Davis
and Mermelstein, 1980) and eight dynamic parameters
(ACps.-, ACS).

The static cepstral coefficients (C,,...,C;) are computed
by first dividing the spectrum between O and 8 kHz into 24
channels spaced according to the mel scale of frequency. The
center frequencies for the first ten channels are spaced 100-
Hz apart, while the remaining 14 channels are spaced logar-
ithmically. The energy in each channel is computed by sum-
ming a triangularly weighted spectrum located at the center
of the channel. Taking the log of the channel energies yields
the log channel energies. The cosine transform of the vector
of 24 log channel energies given by

24
¢,=YE cos(i(j-—O.S) l) i=12,..7,
= 24
where E; is the log channel energy in the jth channel, gives us
the cepstrum coefficients. Only the first seven static cep-
strum coefficients (C,,...,C,) are used in recognition. C, is
computed as a weighted sum of the log channel energies

24
Co= 3 W,
=
where the weights W; simulate the perceptual loudness con-
tour.* The cepstrum coefficients have been shown to give
improved recognition performance compared to a number of
other feature parameters used in speech recognition (Davis
and Mermelstein, 1980).

The eight dynamic parameters (AC,,...,AC,) are ob-
tained by taking signed differences between the correspond-
ing static cepstral values 40-ms apart. The resulting 15-di-
mensional feature vector (C,,...,C;,AC,,...,AC;) is
computed every 10 ms.

V. THE SYLLABLE NETWORK

The syllabic graph search algorithm searches through
all possible phoneme sequences corresponding to valid pro-
nunciations of the words in the vocabulary. How can we
represent these phoneme sequences efficiently? We repre-
sent the phoneme sequences using a graph, where each arc of
the graph corresponds to a phoneme. A path through the
graph exists for every phoneme sequence constituting a word
in the lexicon. The speed of the search is controlled by the
complexity (number of arcs) of the graph.

The complexity of the graph can be reduced by consid-
ering the phonetic structure of phoneme sequences within
words. A word consists of one or more syllables. Every sylla-
ble has a nucleus consisting of a vowel and may also have an
onset and a coda arranged in the form

(0,(0,(03)))N(C,(C,(C5(C)))
where O, stands for a consonant in the syllabic onset, N for
the vowel in the syllabic nucleus, and C; for a consonant in
the syllabic coda. The parentheses indicate optional occur-
rence. Since the syllabic onset, nucleus, and coda are the
subunits of the syllable within which the tightest phonotac-
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tic constraints obtain (Selkirk, 1982), we construct our syl-
lable network by concatenating three subnetworks repre-
senting these three parts of the syllable. For example, using
such a structure, we can easily capture the constraint that all
three-consonant onsets end in a liquid (/1/ or /r/) or a glide
(/j/ or /w/). Since not every phonotactic constraint can be
captured in this way, we allow the syllable network to over-
generate (i.e., generate a superset of) the allowable syllables.
Finally, a graph to represent words is obtained by concaten-
ating a number of syllable networks.

One may ask whether a single syllable network suffices
to represent all the syllables in the lexicon or whether it is
preferable to use a distinct syllable network in each syllable
position within the word. To resolve this question, we com-
puted the different syllables that can occur in each syllable
position of the words in the lexicon. As shown in Table I,
analysis of our 75 000-word vocabulary reveals a significant
rapid decrease in the number of alternative syllables that
may occupy positions two, three, etc. of polysyllabic words.

The results of Table I suggest the creation of a separate
syllable network for each syllable position of the word. This
results in smaller word graphs compared to having a single
syllable network to represent all the 12 128 syllables in the
75 000-word lexicon. The maximum number of syllables in
any word in the vocabulary is ten, resulting in ten distinct
syllable networks.

As mentioned above, each of the ten syllable networks
has separate subnetworks for the onset, nucleus, and coda
since these are the subunits of the syllable with the tightest
phonotactic constraints. The subnetwork for onset has sepa-
rate paths for one- two-, and three-consonant onsets. Simi-
larly, the subnetwork for coda has separate paths for one-,
two-, three-, and four-consonant codas. The syllable
network for word-initial syllables is shown in Fig. 3. The
syllable network representing all possible ninth syllables in
the 75 000-word vocabulary is shown in Fig. 4. Notice that
the syllable networks representing later syllable positions are
more and more restrictive.

In the syllabic graph search, we first estimate the sylla-
ble count K of the unknown. We then create a K-syllable
word graph by concatenating the syllable networks for sylla-
ble positions 1 through K. The syllabic graph search is per-
formed over this graph. The amount of computation re-

TABLE 1. Count of number of phonemically distinct syllables occurring in
each syllable position in the vocabulary. The total number of distinct sylla-
bles in all positions is 12 128.

Syllable position Total distinct syllables
first 9350
second 6597
third 3942
fourth 1672
fifth 668
sixth 269
seventh 95
eighth 33
ninth 10
tenth 3
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Nucleus Coda

Onset

FIG. 3. Syllabic network describing all possible word-initial syllables. The
labels on the arcs show examples of possible phonemes.

quired in the syllabic graph search is proportional to the sum
of the number of distinctly labeled arcs emanating from each
node of the network. We call this sum the total distinct arcs in
the network. Table II shows the total number of arcs and
total distinct arcs for the syllable network corresponding to
each syllable position in the word. The network for the first
syllable has 504 arcs, while the network for the tenth syllable
has only four arcs. The total number of arcs for all ten sylla-
ble networks is 1913.

There are two disadvantages to concatenating syllable
networks to obtain graphs with a given syllable count. First,
concatenation of syllable networks does not allow imposi-
tion of intersyllabic phonotactic constraints, thus giving rise
to overgeneration. For example, concatenated syllable net-
works permit paths between two consecutive vowels that
traverse as many as seven consonants (four coda and three
onset consonants). However, the lexicon indicates that the
maximum number of consonants between any two vowels is
five. Additionally, these five-consonant sequences are great-
ly restricted. Only 24 distinct five-consonant sequences exist
within words in our 75 000-word lexicon. In 11 cases, the
first three consonants are /nts/ and in only two cases is the
third consonant not an /s/.

The second disadvantage of concatenating syllable
models is that we cannot take advantage of the fact that the
distributions of syllables which occur in word-initial posi-
tion is strongly influenced by the syllable count of the words.
For example, even though 9350 different syllables occur in
word-initial position, only 6898 occur in monosyllabic
words, 4976 in bisyllabic words, and 3647 in words three
syllables long. These numbers decrease rapidly with increas-

k end-word
node

node

FIG. 4. Syllabic network for the ninth syllable in all the words in the dictio-
nary. The dotted line indicates a null transition. The network has two possi-
ble end nodes. The end-word node corresponds to words which are nine
syllables long, while the end-syllable node corresponds to the ninth syllable
of words ten syllables long.
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TABLE II. Total number of arcs for the syllable network corresponding to
each syllable position of the words in the vocabulary. Total distinct arcs is
the sum, over the nodes, of the number of distinctly labeled arcs emanating
from that node.

Syllable position Total arcs Total distinct arcs
first 504 341
second 418 284
third 336 229
fourth 250 176
fifth 168 121
sixth 107 75
seventh 73 58
eighth 38 33
ninth 15 13
tenth 4 -
Total 1913 1334

TABLE IV. Distribution of word transcriptions in the lexicon by syllable
count. The 76 211 distinct words in the lexicon have 126 445 distinct tran-
scriptions corresponding to all possible pronunciations of the words. In all,
73 554 words have at least one distinct transcription, while 72 709 words
have no homophone confusions.

Number of word

Syllable count of word transcriptions Percentage of lexicon

1 6 894 5.5%

2 33 891 26.8%

3 39 368 31.1%

+ 27 845 22.0%

5 12 810 10.1%

6 4216 3.3%

7 1142 0.9%

8 249 0.2%

9 25 0.02%
10 3 0.004%

ing syllable count. The same is true of syllables that occur in
other syllable positions of the word. Some of these numbers
are shown in Table III.

An alternative approach based on the above consider-
ations, which would further restrict the possible produc-
tions, would be the construction of separate networks for
each possible syllable count, as opposed to the concatenation
of syllable networks. However, for considerations of simpli-
city, this alternative was not implemented.

VI. ESTIMATION OF NUMBER OF SYLLABLES IN THE
WORD

We require an estimate of the number of syllables in the
unknown to specify which syllabic networks to search. The
number of possible choices for the syllable count in our lexi-
con is ten. If we can specify one or two estimated values for
the syllable count of the unknown, the list of candidates can
be reduced to less than half of the lexicon. Table IV shows
the number of word transcriptions in the dictionary for each
possible syllable count. For a monosyllabic word, we have to
search through only one-twentieth of the phoneme se-
quences in the lexicon, while for words with three syllables
we have to search through one-third of the lexicon.

To allow the syllabic graph search algorithm to process
a graph with a fixed syllable count, the number of syllables in
the word has to be estimated first. We have tested two algo-

l
TABLE III. Total distinct syllables in each syllable position for words with
different syllable counts.

Total distinct syllables in syflable position

Syllable count of word first second third fourth fifth
1 6898 i
) 4976 5217 aie
3 3647 3020 3036 e
4 2099 2121 1745 1167 :
5 1247 1153 1161 730 455
6 627 588 599 454 266
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rithms to estimate the number of syllables in the word. In
both cases the overhead for estimating the number of sylla-
bles is small, less than 2% of the computation time required
for recognition on the VAX 8600.

The preferred algorithm for estimating the number of
syllables uses hidden Markov modeling (HMM). An alter-
native algorithm, based on the convex hull algorithm (Mer-
melstein, 1975), was tried as well, but yielded worse results.
We will describe in detail only the HMM-based estimation of
the number of syllables.

Several algorithms may be considered for carrying out
HMM-based estimation of the number of syllables. For
word recognition, we have observed that HMMs with Gaus-
sian distributions for the output probabilities give higher rec-
ognition performance compared to HMMs trained with vec-
tor quantized outputs. Among the different alternatives for
HMMs using vector quantized (VQ) outputs, we have
found a word-level integration algorithm (Gupta et al.,
1987) to give the best performance. However, for estimating
the number of syllables in the word, the word-level integra-
tion algorithm performs better than using HMMs with
Gaussian distributions for the output probabilities.

To estimate the number of syllables in the word using
the word-level integration algorithm, we use two HMMs
called the syllable models. The syllable model is not a model
of a specific syllable, but a general syllable model trained on
all the syllables in the training set. One syllable model
(called the static syllable model) is estimated using only the
static cepstral parameters, while a second syllable model
(called the dynamic syllable model) is trained using the dy-
namic parameters only. To train the syllable models, the 850
words used in the training set (described in Sec. III) are
manually segmented into syllables. Each syllable constitutes
one observation of the form O} = 0,,...,0,, a temporal se-
quence of / 15-dimensional acoustic feature vectors. Ap-
proximately 1800 observations are used to train the syllable
models.

The static syllable model is trained as follows. We train a
codebook of size 64 using a sequence of static cepstral pa-
rameter vectors corresponding to approximately 2 min of
speech. The codebook is generated using the k-means algo-
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rithm (Duda and Hart, 1973). All the cepstral parameter
vectors in the training set are coded using this codebook.
Each observation for training the static syllable model is of
the form S = §,,5,,...,5;, a temporal sequence of VQ codes
corresponding to the static cepstral parameters for the sylla-
ble. The structure of the syllable model is that of a ten-state’
left-to-right (or Bakis) model (Jelinek, 1976), as shown in
Fig. 5. Each state has self-loop, next-state, and skip-transi-
tion probabilities. With each transition in the syllable model
we associate a transition probability and an output probabili-
ty distribution on the codes. We employ the forward-back-
ward algorithm to train the cepstral syllable model (Jelinek,
1976; Levinson et al., 1983). The dynamic syllable model is
trained similarly using observations of the form D!
= D,,...,D,, a temporal sequence of VQ codes correspond-
ing to the dynamic cepstral parameters for the syllable.

To estimate the number of syllables in the unknown, we
compute the likelihood that the unknown is K syllables long
by concatenating the syllable model with itself K times. In
other words, if the unknown is represented by acoustic fea-
ture vectors O, then we compute the likelihoods L(O1 |
syllable count = 1),..., L(O{| syllable count = 10). The
likelihood of each possible syllable count hypothesis is com-
puted as the product of the likelihood of the syllable count
hypothesis using the static cepstral parameters and that of
the syllable count hypothesis using the dynamic cepstral pa-
rameters. If S| and D! are the temporal sequence of VQ
codes corresponding to the static cepstral parameters and
the dynamic cepstral parameters for the word, respectively,
then

L(0! |syllable count = n) £ P(S | |syllable count = n)
X P(D ' |syllable count = n) .

The syllable count hypotheses are ranked according to their
likelihoods. Only the hypotheses having an average per
frame likelihood greater than half that of the maximum like-
lihood hypothesis are retained, up to a maximum of 3.
When tested on 714 words, the top syllable count hy-
pothesis was found correct for 85.5% of the words, the sec-
ond choice was correct for 13% of the words, and the third
choice was correct for the remaining 1.5% of the words. An
average of 2.3 syllable count hypotheses were retained for
each word. Table V shows the confusion matrix for the top
choice for the syllable counts of the test words. Most of the
errors are due to a three-syllable word recognized as a two-
syllable word or a four-syllable word recognized as a three-
syllable word. The words are generally polysyllabic words
including an unstressed syllable comprising a vowel alone.
Some examples of such erroneous words are capital /kap-o-

ET

FIG. 5. Structure of the syllable model.
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TABLE V. Confusion matrix for the estimation of syllable count in a word.
The test set size is 714 words.

Estimated syllable count

Actual syllable count 1 2 3 4 )
1 382 15 0 0 0
2 6 167 6 0 0
3 2 53 50 2 0
4 0 2 16 11 0
5 0 0 0 2 0

tl/, period /pir-i->d/, and immigration /1m->-gre-fon/.

One way to eliminate errors in three-syllable words like
capital, period, etc. is to allow the syllabic graph of syllable
count two to have paths corresponding to these three-sylla-
ble words. Similarly, the syllabic graph of syllable count
three would have paths corresponding to four-syllable words
like immigration (four-syllable words having an unstressed
syllable comprising a vowel alone). Syllabic graphs of count
K that allow paths for some words containing (K + 1) sylla-
bles require the construction of a separate syllabic graph for
each possible syllable count, instead of forming the syllabic
graph by concatenating K distinct syllable networks.

Using a syllable model with Gaussian distribution of
output probabilities instead of the VQ-based static and dy-
namic syllable models gave poorer results, as shown in Table
VI. For the Gaussian model, 79% of the top choices, 16% of
the second choices, and 5% of the third choices were correct.

We conclude that the syllable models do a reasonable
job of estimating the number of syllables in the word. Using
VQ-based models, overall results show that the top two syl-
lable count hypotheses include the correct estimate over
98% of the time.

Vil. ALLOPHONE MODELS

In Sec. V we described the syllabic graphs whose arcs
correspond to phonemes. In the current section, we will de-
scribe how the phonemes themselves are modeled.

For the most part, we have used one HMM to represent
each phoneme of English. However, in the case of the liquids
/1/ and /1/, we use two HMMs each. The phonemes /1/ and
/r/ have distinct prevocalic and postvocalic models. (Syl-
labic [1] and [F] are grouped in the same allophone with

|

postvocalic /1/ and /r/.) We also employ one HMM to rep-
resent aspiration at the start of the word and one for the
breath noise at the end of the word. Each allophone model is

TABLE V1. Comparison of results for syllable count estimation using VQ-
based versus Gaussian-based syllable models. The VQ-based syllable mod-
els use a word-level integration algorithm.

Syllable model Top choice Second choice Third choice
VQ based 85.5% 13% 1.5%
Gaussian 79% 16% 5%
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trained on a training corpus (described in Sec. III) that has
been manually segmented into phones for training. Training
is performed using the forward-backward algorithm (Je-
linek, 1976; Levinson et al., 1983). We term the HMMs thus
trained allophone models. Appendix A gives a complete list
of the allophone models.

The structure of the allophone models corresponds to
the left-to-right or Bakis model (Jelinek, 1976). With each
transition in the model, we associate a mean acoustic feature
vector. While we estimate a separate mean vector for each
transition, we compute a pooled covariance matrix over all
the transitions within a particular model, resulting in a com-
mon covariance matrix for each allophone. Generation of
one covariance matrix for each allophone model results in a
significant reduction in computation and in elimination of
singular covariance matrices for some transitions during
training.

The number of states varies among the allophone mod-
els: Consonant models have between three and six states and
vowel models have between five and ten states. The number
of states for each allophone model was optimized using a test
set different from the one used in this article. In general, long
vowels have ten states and short vowels except /5/ have six
states. The number of states used for each allophone model is
given in Appendix A.

Vill. SYLLABIC GRAPH SEARCH ALGORITHM FOR
DECODING WORDS AS SEQUENCES OF PHONEMES

As mentioned in the Introduction, a simplistic approach
to large vocabulary recognition would compare the un-
known against all possible phonemic transcriptions for all
the words in the lexicon. To compute the exact likelihood
scores for the 75 000 word choices requires over 80 min of
CPU time on the VAX 8600. The cost of the hardware to
provide real-time recognition capability would be prohibi-
tive. To reduce the number of candidates for precise likeli-
hood evaluation, we require an algorithm to perform a fast
search through all the possible word candidates. The syllabic
graph search algorithm reduces the search time from over 80
min to 1 min on the VAX 8600. For each hypothesized sylla-
ble count of the unknown, we search the corresponding syl-
labic graph created by concatenating the appropriate num-
ber of syllable networks, as outlined in Sec. V.

The syllabic graph search, while faster, is less accurate
than computing exact likelihoods of all the words in the lexi-
con. The exact likelihood is the likelihood of the temporal,
sequence of acoustic feature vectors of the unknown given
the sequence of allophone models corresponding to the pho-
nemic transcription of the hypothesized word. The rough
likelihood of a path in the syllabic graph, corresponding to a
partial or complete allophonic transcription, is computed as
a function of the likelihoods of the arcs (arc likelihoods)
constituting the path. The arc likelihood is an approxima-
tion to the likelihood of the highest exact likelihood path
through that arc. The rough path likelihoods used in the
syllabic graph search are always greater than or equal to the
exact likelihoods.

Recognition results obtained using the syllabic graph
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search are only slightly poorer than those obtained by using
exact likelihoods. For example, on a test set of 714 words, the
average rank of the words using the syllabic graph search
was 2.8, while the average rank using the exact likelihood
scores was 2.3. Retaining several of the most likely hypoth-
eses minimizes the risk of excluding the correct hypothesis.
Estimating the exact likelihood scores for the small number
of retained word hypotheses further sharpens recognition
accuracy. This step is inexpensive in terms of computing
requirements because exact likelihoods need to be computed
for only 30-90 word hypotheses. Since we can compute the
exact likelihood scores for the retained word hypotheses
quite inexpensively, we do not incur any significant loss of
performance by switching from maximum likelihood decod-
ing to the syllabic graph search algorithm.

The major advantage of the syllabic graph search is that
it searches a small graph instead of a large tree. In a tree
search, extending each branch of the tree to obtain the likeli-
hood values requires a significant amount of computation.
Our search is through the syllabic graph, where each arc of
the graph corresponds to an allophone model. The arc likeli-
hoods are assumed to be independent of the preceding or the
following phonemic context and can therefore be precom-
puted.

Figure 6 outlines the difference between a tree search
and a graph search. In the tree search, the allophone model
for /a/ is used three times to extend the paths for /p/, /t/,
and /k/. In the syllabic graph search, the allophone model
for the arc labeled /a/ is used only once to precompute the
arc likelihood independent of the context. (We compute the
likelihood of every arc in the graph only once.) Once the arc
likelihoods are known, the likelihoods of paths through the
network can be computed rapidly. By employing context-
independent arc likelihoods we reduce the search to finding
the most likely paths through the graph.

It is desirable to restrict the syllabic graph search to
allophone sequences corresponding to phoneme subse-

Tree

p d
m o W Graph
w al p

FIG. 6. Comparison of the graph search and the tree search algorithms.
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quences of words in the lexicon having the desired syllable
count. This is achieved using the lexical tree (see Sec. I and
Fig. 2). The lexical tree places three restrictions on partial
paths through the syllabic graph. First, a valid partial path
through the syllabic graph must have a corresponding par-
tial path in the lexical tree. Second, the partial path in the
lexical tree must have the correct associated syllable count
tag. Third, the syllable position tag for each branch of the
partial path in the lexical tree must correspond to the correct
syllable in the syllabic graph with which the branch is asso-
ciated.

In order to compute rough likelihoods of paths through
the syllabic graph, we first calculate all the arc likelihoods.
We illustrate the algorithm for computing arc likelihoods
using the network of Fig. 7. Consider the computation of the
likelihood of arc 4. The subnetwork of Fig. 8 is derived by
retaining only the arcs that can form a path through arc 4.
Let O! = 0,,...,0, be the observation sequence of feature
vectors corresponding to the input word and let M|, M,, M,,,
My, and M, be the allophone models corresponding to the
allophones represented by arcs 1, 2, 4, 6, and 7. Using the
subnetwork in Fig. 8, the likelihood value for arc 4 is then
given by

L,=Y max[P(O}|M,),P(O'|M,]P(O} ,|M,)
¥}

Xmax[P(0], ,|M),P(O}, |M)], (D

where P(O ', | M, ) is the probability of observing the feature
vectors O 7, given the allophone model M, . The arc likeli-
hoods for all the arcs in the syllabic graph can be computed
iteratively, as outlined in Appendix C.

In contrast, the exact likelihood score for a path is deter-
mined by summing the probabilities of all possible state se-
quences through the path given the observation sequence.
For example, the exact likelihood for the path (2,4,6) is ob-
tained by

T . = Z P(O{|M,)P(O%, | IM)P(O} |My) .
Lj

Note that arc likelihood is computed not only from the
observations assigned to the states corresponding to the arc
in question, but from the entire observation sequence for the
word. In (1), taking the maximum for each 7 of the probabil-
ities P(O{ |M,) and P(O | |M,) and for each j of the proba-
bilities P(O ], | |M,) and P(O , | |M;) ensures that L, (the
arc likelihood computed for arc 4) is greater than or equal to
the exact likelihood score for any possible path through arc
4. The fact that the exact likelihood for any path through a
given arc is less than or equal to the arc likelihood of that arc

FIG. 7. Sample network illustrating the search algorithm. Each arc repre-
sents an allophone model.
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further implies that the minimum arc likelihood along a path
is greater than or equal to the exact likelihood of the path.
This inequality will be important when we discuss rough
path likelihoods below.

Once the arc likelihoods have been computed, the next
step is to find the N most likely paths through the syllabic
graph (N=30). To do this, we need to compute rough likeli-
hoods of partial paths from the arc likelihoods computed
above. A simple approximation is to assume that the rough
likelihood of the path depends only on the arc likelihoods
constituting the path. In choosing the appropriate function
of the arc likelihoods, we want the rough likelihood of the
path to be as close to the exact likelihood as possible. To
make the rough likelihood approach the exact likelihood
from above we bound the rough likelihood of a path from
below by the exact likelihood score and then minimize it.

Many possible functions are available that guarantee the
rough path likelihoods to be greater than the exact likeli-
hoods. Examples of these are the arithmetic mean of the arc
likelihoods, their geometric mean, and their minimum along
the path. Results obtained with these three functions are
compared in the first three rows of Table VII. Of these three,
the minimum function gives the best recognition perfor-
mance. This is because for positive numbers (i.e., likeli-
hoods)

arithmetic mean>geometric mean>minimum .

Since all of these functions give rough path likelihoods
greater than or equal to the exact likelihood, it is the mini-
mum function that gives the rough path likelihood closest to
the exact likelihood score. This accounts for the result that
the recognition rate, using the minimum function to com-
pute the rough path likelihoods, is the highest.

The performance of the syllabic graph search can be
further improved if we can compute path likelihoods smaller
than the minimum of the constituent arc likelihoods. To find
such a function, let us consider Fig. 8 used in computing L,,
the arc likelihood of arc 4. From the discussion of arc likeli-
hoods, we know that L, must be greater than or equal to the
exact likelihood of any path which includes arc 4. For exam-
ple, the exact likelihoods for paths (1,4,6) and (2,4,6) must
be less than or equal to L,. Note that if arc 4 has the smallest
arc likelihood of all the arcs 1-4 and 6, then the rough likeli-
hoods for paths (1,4,6) and (2,4,6) using the minimum
function are equal, even though L, may be significantly low-
er than L,. We can rectify this inconsistency by multiplying
the rough likelihood for path (2,4,6) by the ratio of arc like-
lihoods L,/L,. In general, more than two branches may ter-
minate at node 2. In that case, we take the ratio between L,
and the arc terminating at node B having the maximum arc
likelihood. Similarly, we can multiply the rough likelihood
of path (2,4,6) by the ratio of the arc likelihoods of arc 6 and

FIG. 8. Subnetwork used to compute the likelihood for arc 4.
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TABLE VIIL. Percent correct and average rank of correct word for the
75 000-word recognizer on two different speakers using test sets of 714
words for each speaker. We compare different methods for scoring com-
plete paths through the network. All words have equal prior probabilities.

Speaker 1 Speaker 2

Scoring method % correct average rank % correct average rank
arithmetic mean 50% 7.6 52% 11.2
geometric mean 66% 4.0 68% 5.3
minimum 68% 4.1 71% 4.5
ratio likelihood 72% 2.8 77% 2.1
exact likelihood

scores 75% 2.3 83% 1.5

the arc emanating from node C having the maximum arc
likelihood. In other words, the rough likelihood for the path
(2,4,6) is given by

Lys6 = L4[L2/max(Ll,L2) ] [Ls/max(L(,,L7)] 5. £2)

where L, is the likelihood of arc n. The likelihood function
(2) is always less than or equal to the rough path likelihoods
computed using the minimum function described above. We
call (2) the ratio likelihood function.

We have found empirically that the rough likelihoods of
complete paths using the ratio likelihood function are always
greater than or equal to the exact likelihoods for the same
paths; therefore, the reduction of the scores by the ratio of
the arc likelihoods is reasonable. The performance of the
recognizer using the ratio likelihood function is shown in the
fourth row of Table VII and represents a clear improvement
over that using the minimum function.

Once the rough path likelihood function for scoring the
partial paths has been established, it can be used as the heu-
ristic function in the 4 * algorithm to carry out the search.
We can verify that the rough likelihood fulfills the admissibi-
lity condition for the heuristic function of the A4 * algorithm,
i.e., the rough likelihood of a partial path is always greater
than or equal to the rough likelihood of a complete path
containing it. (In fact, the rough likelihood of a partial path
is greater than or equal to any extension of that path.)

We will now outline the actual procedure using the
network of Fig. 7 as an example. The following steps are
performed iteratively for the 4 * search.

(1) Put the null path corresponding to node 4 on the
input list, with its likelihood set to 1.0. Initialize the output
list to be empty.

(2) Remove the partial path in the input list with the
highest likelihood and expand all 1-arc extensions of this
partial path.

(3) Check all path extensions with the lexical tree for
validity. Put the valid partial paths in the input list and the
valid complete paths in the output list.

(4) Check the condition for termination. The search
terminates if there are at least N complete paths in the output
list, with the likelihood of the Nth path greater than the
highest likelihood partial path in the input list. If the termi-
nating condition is not satisfied, go to step (2).

Generally, the recognition performance for words im-
proves with increasing syllable count. Therefore, the total
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TABLE VIII. Computation time for the syllabic graph search algorithm
depending on N, the average number of phoneme sequence hypotheses gen-
erated for each syllable count hypothesis. The test set size is 714 words.

N Computation time Words missed
5 41s 7.4%

15 52s 3.9%

30 65s 1.3%

number of word hypotheses  is chosen to be as large as 40
for monosyllabic words and as small as 25 for words four or
more syllables long. These values ensure that the likelihood
of not having the correct word among the decoded word
hypotheses is very small.

The computation time for the syllabic graph search al-
gorithm varies with the syllable count of the word and with
N, the number of hypotheses generated. We estimated the
computation time for generating different numbers of hy-
potheses on a test set of 714 words, allowing on average 2.3
syllable count hypotheses per word. All the computing times
were measured on the VAX 8600, a 4 MIPS machine. The
average computation time for generating N hypotheses per
syllable count hypothesis is shown in Table VIIL. Use of
approixmately 30 word hypotheses (N = 30) per syllable
count hypothesis limits the computing time to 65 s per word,
while keeping the number of correct word hypotheses
missed by the search algorithm to less than 2%. The compu-
tation time of 65 s can be broken down into 7 s for estimating
the Gaussian probabilities, 10 s for estimating the arc likeli-
hoods, and 48 s for the graph search to generate the hypoth-
eses for the average 2.3 possible syllable counts for each un-
known. Time required to compute the exact likelihood for 70
phoneme sequences per unknown is 2.7 s. In contrast, com-
puting the exact likelihoods for all the 126 445 possible tran-
scriptions in the dictionary would require over 80 min. Thus
a total processing time of 68 s for fast search and reduced
scope exact likelihoods represents a factor of 70 or better
computational savings.

The recognition performance for the syllabic graph
search algorithm is compared against the exact likelihood
scores in Table VII. The recognition performance improves
from 72% to 75% (speaker 1) and from 77% to 83%
(speaker 2) when we use the exact likelihood scores for
ranking the phoneme sequence hypotheses. The average
rank for the correct word improves from 2.8 to 2.3 (speaker
1) and from 2.1 to 1.5 (speaker 2). These results indicate
that the assumptions required for the syllabic graph search
impose a small performance penalty. If the fast search is
followed by a maximum likelihood search over the top can-
didates, the performance penalty is avoided, yet the advan-
tage due to the reduction in computation is retained.

IX. CONCLUSIONS

We have proposed a new technique to generate a list of
word hypotheses from the acoustic information for a spoken
word. An algorithm is introduced for estimating the number
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of syllables in the word that reduces the lexicon of words to
much smaller sublexicons—one for each of the hypothesized
syllable counts. A second algorithm implements a graph
search through a network appropriate to words with the giv-
en number of syllables. The syllabic graph search is made
feasible by assigning to each arc of the network a likelihood
that is independent of the context. Context independence
allows the rough likelihood for a path in the syllabic graph to
be rapidly computed as a function of these arc likelihoods,
resulting in a fast search. A factor of 70 reduction in compu-
tation is achieved. The recognition results for the syllabic
graph search algorithm are close to those obtained using the
exact likelihood estimates.
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APPENDIX A

The complete list of the allophone models used in this
article is as follows. We have used the IPA symbols to repre-
sent the phonemes. Numbers in parentheses represent the
number of states in the model for that allophone. aj(10),
aw(5), 2j(5),1(10), 1(6), €(10), £(6), =(6), a(6), A(10),
v(10), u(5),0(10),2(5),3(5), =" (6) (raised or tense ), 1

|

(5) (includes both syllabic and postvocalic), r( 5) (includes
|

both syllabic and postvocalic), m(5), n(5),:605),:41(5),
d3(3),j(5),1(5) (only prevocalic), r(5) (only prevocalic),
w(5), f(5), v(5), 6(5), 8(5),s(5), z(5), [(5), 3(5), h(6),
p(5), b(4), t(5), d(4), k(5), g(4), aspiration(4),
breath(4).

APPENDIX B

Some examples of texts used as test sentences are as fol-
lows. They are shown here as they are spoken. Note that
words like April (text 4) do not need to be explicitly capital-
ized since they are always written with a capital letter. The
same applies to sentence initial words. However, Sorrow in
the middle of a sentence (text 4) must be explicitly capital-
ized: capital sorrow.

Text 1:
begin paragraph some airport immigration officers said the
real reason for what they described as a lax and haphazard
approach is that their superiors are second hyphen guessing
politicians and seem more concerned about not being accused
of racism toward a particular nationality than about national
security period begin paragraph open quote but just wait until
something happens and it’s traced to the practice then the
ellipsis will hit the fan comma close quotes one enforcement
officer said period

Text 2:
his future assignments will involve the research of new algo-
rithms and heuristics to model and solve new networking
problems introduced by integrated network technologies peri-
od his strong background in mathematics is sure to be an asset
to the department period
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Text 3:
doctors say the most disturbing trend they have noticed in the
past few months is the increase in the number of heart hyphen
attack victims and other seriously ill patients who turn up in
taxis or on foot instead of in ambulances where they belong
period that’s because until last month comma hospitals were
turning away ambulances when their wards became too full
comma except in critical cases comma so patients were unable
to choose their hospitals period
Text 4:

begin paragraph why are you vexed comma lady question-
mark why do you frown question-mark here dwell no frowns
comma nor anger comma from these gates capital sorrow flies
far colon capital see comma here be all the pleasures capital
that fancy can beget on thoughts comma when the fresh blood
grows lively comma and returns capital brisk as the April buds
in primrose season period and first behold this cordial julep
here comma capital that flames and dances in his crystal
bounds capital with spirits of balm and fragrant syrups mixed
period

APPENDIX C

We will illustrate iterative computation of the arc likeli-
hoods for all the arcs in the syllabic graph using the network
of Fig. 7. An example for computing the arc likelihoods is
given by Eq. (1), which gives the arc likelihood for arc 4. To
compute the arc likelihoods for all the arcs, we first compute
an /-dimensional vector for each arc in the network. These
vectors are computed sequentially, starting at the initial
node and ending at the final node. We present the computa-
tional steps in the order of execution.

For the network shown in Fig. 7, we compute seven
vectors, one for each branch in the network. The first three
vectors are the values of P(O'|M,), P(O{|M,), and
P(0'|M,),fori=1,...,I. The next two vectors are the values

X7 = Emax[P(O'i |M,),P(0}|M,) PO/, |M,),

()= Zmax[P(O’j |M,),P(O} |Mz)]P(01}+ 1| M5) ,
for j = 1,...,/. The final two values are

Zmax[x(j),y(j),P(Of; |M3) PO, Mg, (CD)
J

S max [x(/),y(/),P(04 |M3) 1P(O] M) . (C2)
J

Equations (C1) and (C2) correspond to the arc likelihood
of arcs 6 and 7, respectively. In general, the last several val-
ues computed correspond to the arc likelihoods for the arcs
ending in the final node of the network.

To compute the arc likelihoods for the rest of the arcs,
we need another set of /-dimensional vectors, one for each
node in the network (except for the initial and final nodes).
These vectors are computed starting at the final node and
working backward to the initial node. For the network of
Fig. 7, we need two vectors. We first compute the vector
associated with node C. This vector is given by
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c(j) =max[P(O} |M),P(O],,|M})],

forj = 1,...,I. The vector corresponding to node B is given by
b(i) = max(Z P(O/,  |M)e( ), Y PO, ]Ms)c(j)) ;
7 7

for i = 1,...,I. The arc likelihood for each arc is computed as
the inner product of the vector corresponding to the arc with
the vector corresponding to the end node of this arc.

'In subsequent publications, the IBM group uses a 20 000-word vocabulary
(Averbuch et al., 1987).

The terms graph and arc in graph theory (Roberts, 1984) can be equated
to the terms network and transition (or branch), respectively.

*Since we are not using a language model, homophone confusions are not
counted as errors.

“The weights W,, j=1,..,24 are (0.0016, 0.0256, 0.1296, 0.4096,
1.0,...,1.0).

>There is no connection between the ten states of a syllable model and the
maxium syllable count of ten. We observe a small degradation in recogni-
tion performance if we use five states for each syllable model rather than
ten.
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