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Abstract—In this paper we describe a new type of Markov model
which we have developed to account for the correlations between suc-
cessive frames of the speech signal. The idea is to treat the sequence of
frames as a nonstationary autoregressive process whose parameters are
controlled by a hidden Markov chain. We show that this type of model
performs better than the standard multivariate Gaussian HMM when
it is incorporated into a large-vocabulary isolated-word recognizer.

I. INTRODUCTION

HE technique of Markov modeling has aroused wide-

spread interest in self-organizing pattern classifiers as
a tool for speech recognition. Statistical methods have
long been popular in other areas of pattern recognition,
but it is only with the advent of Hidden Markov Models
that it has become possible to use such methods on a large
scale in speech recognition. The principal obstacle has
been that the speech signal is manifestly nonstationary,
whereas traditional stochastic models are only equipped
to handle sequences of independent identically distributed
(IID) observations or stationary time series.

The standard left-to-right HMM provides a technique
for studying nonstationary time series (which may be vec-
tor or scalar valued). It is based on the assumption that
the observations are locally 1ID: during its sojourn in a
state of the Markov chain, the model generates observa-
tions by random sampling from the output distribution as-
sociated with the state. The only type of statistical depen-
dence between observations allowed for by the model is
due to the underlying Markov chain. Because of the Mar-
kov property, it decays rapidly in time, and in the degen-
erate case where all the output distributions coincide there
is no dependence at all. A more flexible way of handling
correlations in nonstationary time series is clearly desir-
able.

The general ARMA process is a stationary, linear model
for sequences of identically distributed observations which
are not independent. A natural way of studying the cor-
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relations between frames of the speech signal is to use a
hidden Markov chain to incorporate nonstationarity into
a vector-valued ARMA process in the same way that the
standard HMM incorporates nonstationarity into an IID
process. The purpose of this paper is to implement this
for autoregressive processes. For a completely different
approach to the problem, using neither AR processes nor
HMM’s, see the stochastic segment model of BBN [1].

Nonstationary autoregressive processes have received
considerable attention in the past [2]-[4], both for their
own sake and as a tool for speech analysis and recogni-
tion. The principal method for modeling nonstationarity
has been to express the time-varying regression coeffi-
cients as a linear combination of a small number of basis
functions, chosen arbitrarily. Poritz [5] was the first to
use an HMM to capture nonstationarity in an AR process.
Our model is formally very similar to the Hidden Filter
model [6] (and, indeed, contains it as a special case) but
it is designed to handle the speech signal at the frame
level, where it is represented by feature vectors, rather
than dealing with the signal directly.

We first describe our model and develop versions of the
forward-backward and Baum-Welch algorithms for it. In
order to use the model in speech recognition, it is neces-
sary to find ways of reducing the number of parameters to
be estimated. We have tried two methods of doing this
and report the results of both series of experiments.

II. THE GENERAL LINEAR PREDICTIVE MARKOV
MoDEL

We consider a vector-valued autoregressive process
whose parameters are allowed to vary in time according
to the evolution of a hidden Markov chain.

With each transition in the Markov chain, we associate
a set of regression coefficients together with a mean vector
and a covariance matrix which serve to characterize the
distribution of the prediction error. To be precise, sup-
pose that the Markov chain is in state s at time r — 1, and
in state s’ at time ¢, and let Y, stand for the output of the
process at time 7. Then we assume that Y, can be written
in the form

Y, =A(s,s') + Bi(s,s") Y., + -
+ B,(s.s')Y,_, + E. (1)
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Here Y, and A(s, s’ ) are d X | vectors, the B’s are d X
d matrices, and the residual E, is a d X 1 random vector
having a Gaussian distribution with mean 0 and covari-
ance matrix X (s, s’ ); moreover, the residuals at different
times are assumed to be independent. (It is natural to use
matrix regression coefficients unless the components of
the observation vectors are uncorrelated.)

It will be convenient to rewrite (1) in the short-hand
form

Y, =A(s,s") + B(s,s' )X, + E,.

Here, X, is the dp-dimensional column vector
Y

Ylvp
and B(s,s" ) is thed X dp matrix (B, (s,s" )| | B, (s,
s')).

The Hidden Filter model is obtained by setting d = 1
and 4 = 0. Note that, for a stationary autoregressive pro-
cess, the dc term A4 is necessarily O; but for our nonsta-
tionary model there is no such restriction and we treat A
as a parameter to be trained in the same way as the regres-
sion coefficients. The reason for doing so is to retain the
descriptive power of the standard multivariate Gaussian
HMM (MVGHMM), which can be obtained by setting B
= 0. In fact, our model also contains a well-known var-
iant of the MVGHMM as a special case: if we take B =
(0] ---]0|7), we obtain the ‘‘dynamic parameters’’
model (without changing the parameter set).

In this section we show how to estimate the parameters
of the model, namely, A(s,s’'), B(s,s'), and L(s,s")
as well as the transition probabilities of the hidden Mar-
kov chain, from a sequence of observations ¥pwis
e Yo, Y, e, Yy

A. The Forward-Backward Algorithm

If 8 = (50, * * *, s7) is a sequence of states, we denote
by P(Y, 8| X)) the joint likelihood of the observation se-
quence Y, - - -, Yy and the event that Y, is emitted on
making the transition from s, to s,, Y, on the transition
from s, to s,, etc., all conditioned on X,; similarly, we
use P(Y|8, X,) to stand for the conditional likelihood.

The conditional likelihood is easily calculated. The re-
sidual E, has density function

(27{‘)11/2‘2(5 |‘ s)’I/Z CXP{—EE,*E(S,_l,S,) EI}

and, because the residuals are independent, the joint den-
sity function of Ey, - - - , E; conditioned on § is just the
product

r 1

,E(sl—l’ S,)|

1 -1
- exp {—5 EXZ(s,_1,$,) E,}.

d/2 1/2

11
=1 (2x)

(The asterisk indicates the transpose.) It follows that

T
P(Y|S* XI) i H D(Xh Y, Si—1s S/)

i
=1

where D(X,, Y,, s,_,, s,) is being used to stand for the
quantity

1
d/?
@m) |5 (s, s,
- B(Sl—ls S/)Xr) Z:(S/—lv 51)_](Y/

1
)’1/3 exp {‘5 (Y, — A(s, 1, s,)

—A(s,_\,s,)

- B(S,,|, SI)XI)}'

which is just the likelihood of the observation Y, condi-
tioned on the previous observations X, and the transition
8 i = S

The probability of the state sequence § = (s, - - - ,
s7) 1s just the product of the transition probabilities

>
P(8) = I P(s,[s, )
(assuming that the starting distribution is concentrated on
the state s5) and the joint likelihood P(Y, $|X,) can be
found by combining the last two equations. The total like-
lihood of the observation sequence can now be obtained
(in principle, if not in practice) by summing these joint
likelihoods over all possible state sequences $. However,
the forward-backward algorithm [7] does this more effi-

ciently.
Fort =1, - - -, T, we define the forward probabilities
by the equation

a(s) = P(s, =s, Y, -+, ¥|X)
and fort =0, - -
probabilities by

61(5) = P(Yl+h T

for each state s in the Markov chain. The forward and
backward probabilities can be calculated recursively from
the formulas

o(s’) = Z o (s) P(s"|s) D(X, Y,, s, 5")

, T — 1, we define the backward

-, YTIs, =5, X)

6:(5) = ;P(S'IS) D('Xr+lv Yy, s, s’)6,+,(s')

once we have starting values for o and terminal values for
B. For the application we have in mind, we will be using
a left-to-right model so we distinguish two states s; (the
initial state) and sy (the final state) and constrain the state
sequences 8 = (g, * * * , §7) to satisfy s, = s5; and s, =
Sf.

The recursion formulas will give the correct values for
«; and Br_, if we adopt the conventions

1 ifs =g

0 otherwise

auls) = |

e s,
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and
S) =
r 0 otherwise.

The total likelihood of the observation sequence can
now be obtained from the forward recursion by

PLY;, + 5%, YT\X|) = CXT(S_/')-

One additional piece of notation will be useful. If s and
s' are two states, we define vy, (s, s’ ) to be the probability
that the Markov chain is in state s at time ¢+ — 1 and in
state s " at time ¢ conditioned on the observation sequence.
In terms of the forward and backward probabilities,

P(s'[s) a,1(s) B(s') D(X. Y, s, s")
P(Y,, -+, Yr|X) ‘

Y.(s,s") =

B. The Reestimation Formulas: Single Token Case

As with other types of hidden Markov model, the EM
algorithm provides an iterative solution to the problem of
parameter estimation [6]. We define the auxiliary Q func-
tion as in [8]. Just as for the MVGHMM, the problem of
optimizing the Q function turns out to be an exercise in
least-squares so it is quite straightforward to find the crit-
ical point in closed form and we merely outline the deri-
vation.

LetY = (Y,, - -+, Y;) and suppose M, and M are two
models corresponding to different choices for the param-
eter values. For each state sequence 8 of length 7 + 1,
let Po(8) stand for the probability of 8§ conditioned on the
observation sequence, calculated using the parameters of
the model M,. Define

Q(My, M) = % Py(8) In P(Y, S|X,, M).

The following lemma is a simple consequence of the
convexity of the logarithmic function [8].
Lemma:

<NH&M)
PR M)

P(Y|X,, Mo)> = Q(My, M) — Q(Mo, My).

The point of this inequality is that if M, is the model
corresponding to an initial estimate of the parameters, the
likelihood of the observation sequence can be increased
by choosing the parameters of the new model M so as to
maximize Q(M,, M ).

A manageable description of Q can be obtained by
straightforward manipulation:

T
Q=2 2 y(s.s'|M)(InD(X,. Y. s.5")
sy =

+In'P(s'|s))

where the outer sum extends over all pairs of states s, s’
in the Markov chain.

The reestimation formulas for the transition probabili-
ties are obtained by maximizing the term £, .. £/_, v, (s,

s'|Mp) In P(s'|s); the new estimates are
L1 v(s, s | My)
E.\| EIT:| ’YI(S’ SI.MO)

Since we are assuming that there are no constraints on
the model relating the regression parameters associated
with different transitions,' the reestimation formulas for
the regression parameters are obtained by maximizing L,
v,(s,s"|My)InD(X,, Y, s,s') foreach pairs, s'; drop-
ping the reference to s, s’ and ignoring the constant term
In (27)9/%, the objective function is

P(s’ls)=

T
M(A,B,L) = 2 v{—4Iin|Z|
r=1 -
1 *yg =1
—}(Y, - 4 - BX,)*E
- (Y, — A - BX,)}.

Setting the derivatives of M with respect to A in all di-
rections equal to 0 gives the vector equation

Sy — NA + BSX
where

Sy = ;’YIYI
N=Z'y,.
1

Likewise, setting the derivatives of M with respect to
B equal to 0 gives the matrix equation
Syx = AS:\I'< + BSXX

where

T
SX=Z

2y YXr

t=1

Syx =

The new estimates for A and B can now be obtained by
solving the pair of simultaneous equations

Sy = NA + BSX
Syx = AS;'; + BSXX

which, incidentally, bear an interesting resemblance to the
equations for the slope and intercept in simple linear
regression.

The reestimation formula for I is obtained as in the
case of the MVGHMM [9]:

A
1
L=y 2ZmY,—A-BX)(Y,~4-BX)"
=

'The Appendix outlines the changes that have to be made when such
constraints are imposed.
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where, as before, N = L, v,. An efficient formula for im-
plementation can be obtained by multiplying this out and
using the equation

Sy: NA + BSX

to simplify the result. This gives
1
L= N (Syy — BS¥x — SyxB* + BSxxB* — NAA*)
where

T
Syy = 21 v, Y, YK

=1

C. Multiple Tokens

A left-to-right model. cannot, in general, be reliably
trained with a single token, so suppose that we have L
tokens Y, -+ - ¥ of lengths T, - - - | T at our
disposal. For each token Y'", calculate

(h M())=P(s,_] = .5, S,=S’|Y”), Mo)

¥ (s, s’
forr =1, - - -, T, For each pair of states s, s, the
matrices Sy (s, 5" ), Sy (s,5"), Sxx(s,5"), Syx(s,s"),
Syy (s, s") and the scalar N(s, s’ ) are now defined by

L T
Se(s.57) = B 2 4 (s, 57| My) X1
=l1=1

Tt

L
Sy(s,s') = Z 2 'yf”(s,s'|M0) ¥

=1

T
2y (s, 57| Mo) X X1
T
i ! i
PIRTRCRH I 0

L T
Syy(s, s') = DI ’Y;”(S, S'lMo) Yf“Tfl)*
=1

L T
N(s,s") = 20 2 4" (s, s'| My)
I=11=1
and the reestimation equations take the form
Sy(s,s') = N(s,s")A(s,s') + B(s,s') Sx(s, s")
Syx(s,s")

I

A(s,s')S¥(s,s") + B(s,s") Sxx(s.s")
1

Zis, 8" ) = — (SYY(S’S’) _B(S,S')Six(s’s')
N(s,s")
— Syx(s,s") B*(s, s")
+ B(s,s") Sxx(s.s") B*(s, s")
= N(s.s") A(s, s') A%(s, 5"))
p(s|s) = =t B vl (s, 5| o)

E.ﬂ E/L:| EIT;I’I 7;”(‘99 S||M())

The derivation is similar to the single token case.

III. EXPERIMENTAL RESULTS

We have tried implementing several variants of the lin-
ear predictive model in our experimental large-vocabulary
speaker-dependent isolated-word recognizer (described in
detail in [10]).

The recognizer is phoneme-based with a set of 44 pho-
nemes each represented by a left-to-right HMM. Our best
results have been obtained using an MVGHMM con-
strained so that all the output distributions associated with
the transitions in a phoneme model have the same covar-
iance matrix. The number of transitions in a model can be
as large as 30 (in the case of diphthongs) so pooling the
covariance matrices is necessary to ensure robust esti-
mation; it also has the advantage of reducing the amount
of computer time needed in training and recognition.

Using a window of length 25 ms, we calculate a set of
eight mel-based cepstral coefficients (co, * - - , ¢;) every
10 ms; ¢, is the loudness. As our feature vector for the
MVGHMM we take (¢, - * * , ¢7, Acy, * * + , Ac,) where
Acy is calculated by taking the difference between the
loudness over an interval of length 40 ms; likewise for
Acy, *++, Aco.

We had a speaker record a set of 1203 words (consisting
of several short texts and a number of words chosen to
represent various phoneme clusters) which was then hand-
segmented into phonemes. Using the 15-dimensional fea-
ture vector (¢, * * * , ¢4, Acg, * * * , Ac,) the MVGHMM
gives a recognition rate of 86.7 percent. Performance
drops to 79.4 percent when the parameter set is restricted
to(cy, - -+, cq, Acy); this was the parameter vector used
for the linear predictive models.” We used a test set of
399 words of text in all experiments; the dictionary con-
sisted of 60 000 words and a uniform® language model
was used.

A major issue in implementing the linear predictive
model is to decide which lags to use in the regression. In
a preliminary experiment, we took p = 1| and obtained a
poor recognition rate of 73 percent. (Paradoxically, the
likelihoods obtained on the training and test data were
much higher than for any other model we have worked
with.) We decided to exclude lag 1 which made it nec-
essary to change the estimation formulas slightly. Quite
generally, the reestimation formulas can be used to train
an autoregressive model of the form

YI:A+BIYI—/| + - +BI,Y,
if we define X, to be

+ E,

-

YI—I:

Koy,
and proceed as before.

*Acy is a better choice of parameter than ¢, for recognizers based on
standard Markov models since it is independent of the overall energy level.
However, it might be appropriate to use ¢, itself for the linear predictive
model and rely on the regression terms to track the variation of ¢, from one
frame to the next. We did not explore this possibility.

*All words in the vocabulary are considered a priori equally likely, re-
gardless of context.
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Also, there is the problem of robust estimation. In our
first implementation (reported in Table I), we constrained
the models so that the regression and covariance matrices
were the same for all transitions in each of the phoneme
models. This complicates the reestimation formulas
somewhat (see the Appendix). In this framework, the re-
cognizer uses the same prediction mechanism for all tran-
sitions in a phone model, and the uncertainty as to which
transition corresponds to a given frame is rather high. This
may explain why the improvement over the standard Mar-
kov model is small.

In the other implementation that we tried, the regres-
sion and covariance matrices were constrained to be di-
agonal (Table II). This amounts to treating the compo-
nents of the frame vector as if they were independent of
each other (a reasonable assumption in the case of cepstral
coefficients). The reestimation formulas for the parame-
ters of the model corresponding to each component can
be obtained by simply putting d = 1 in the above deri-
vation. In this case, we pooled the regression and covar-
iance matrices for all transitions from each of the states
but imposed no tying across states.

When the MVGHMM is trained with analogous con-
straints on the covariance matrices and the full 15-dimen-
sional feature vector is used, the recognition rate is 85.5
percent.

As a final experiment, we tried combining the two
methods by taking the 15-dimensional feature vector as
input to the diagonal linear predictive model with lag 4.
The performance degraded to 78.7 percent, presumably
because the number of parameters to be estimated was too
great.

IV. DiscussioN

The general problem of decorrelating the frames of the
speech signal requires a global computational model of
speech dynamics, i.e., a good theory. Our work is merely
experimental. We chose to work with the HMM formal-
ism because it is the simplest global model available, and
the only reason for choosing AR rather than MA pro-
cesses is that they have worked before in speech analysis
and the mathematics is tidier; there are undoubtedly many
other linear statisticel models that can be easily integrated
with the EM algorithm, some of which may be better able
to handle the correlations between frames.

We found that our linear predictive model outperforms
the MVGHMM in our large-vocabulary isolated-word
recognition task when the parameter set (¢;, * ** , c¢7,
Acy) is used, but that our best results are obtained with
the MVGHMM and the parameter set (¢, * * * , ¢, Acy,
cev L Acy).

As explained in Section II, the linear predictive model
contains both the ‘‘static’’ and ‘‘dynamic’> MVGHMM'’s
as special cases, so it is somewhat surprising that the
‘‘static + dynamic’’ MVGHMM should give better per-
formance than any of the versions of the linear predictive

TABLE 1
POOLED REGRESSION AND COVARIANCE MATRICES

Model Recognition Rate
p=11=2 78.9 percent
p=11=4 81.0 percent
p=11=6 80.2 percent
p=11=28 81.0 percent

p=2.1,=3,1,=6 81.0 percent

TABLE 11
DIAGONAL REGRESSION AND COVARIANCE MATRICES

Model Recognition Rate
p=11 =4 82.7 percent
p=21=41,=28 83.0 percent
p=3.1,=21,=4,1,=6 81.4 percent
p=3.1=4,1,=6,1,=8 83.0 percent

model that we implemented. (Since we used the same
training set for all models, irrespective of the number of
parameters to be estimated, this could be just a matter of
undertraining.)

The ‘‘static + dynamic’” MVGHMM is in fact very
similar to the linear predictive model with p = 1. Wel-
lekens [11] points out that when the dynamic parameter
vector for each frame is constructed by adjoining the static
parameters from the previous frame, the lag 1 correlation
matrices between the frames occur as submatrices of the
covariance matrices of the Markov model, and the cor-
relation matrix is essentially the regression coefficient B.
The major difference is that the mean vectors in the *‘static
+ dynamic’’ model contain more information than those
of the linear predictive model (being of twice the dimen-
sionality). Both models account for short-term dependen-
cies between frames and ignore long-term dependencies
between phonemes. Other work that we have done [12]
leads us to believe that the latter type of dependency is
probably the more important. Needless to say, it is also
much more difficult to model mathematically.

APPENDIX
POOLING THE ESTIMATES OF THE REGRESSION AND
COVARIANCE MATRICES

Suppose we are given a linear predictive Markov model
and a partition of the transitions into classes such that the
transitions in each class have common regression and
covariance matrices. The transitions within each class C
can no longer be treated independently of each other in
deriving the reestimation formulas but the argument is
very similar—in this case, one maximizes

(Z) 2 pi(s, s'|My) InD(X,, ¥, s,s")

5.8 1
where the outer sum extends over all transitions s — s’
in C. We merely state the result here.
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Calculate Sy (s, s'), Sy(s, s"), Sxx (s, s"), Syx (s,
s"),Syy(s,s"),and N(s,s') as above for each (s, s")
e C. Let

Sxx = 2 Sxx(s,s")

Syx = 2 Syx (s, s")
(s.5")€C
Syy = Z Syy(s,s")
(s.5")€C
N= 2 N(s,s'")
(s.5")eC

The reestimation equations are

Sy(s,s') =N(s,s')A(s,s') + BSx(s,s")

((s,s')ee)
SYX: Z(DA(S,SI)S)((S,S,)*+BSXX
(s.5")e
1
r =N Syy_BS*;X_SyxB* +BSX)(B*

— 20 N(s,s')A(s.s')A(s, s")*

(s,8")eC
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