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Abstract

Many acoustic misrecognitions in our 86 000-word speaker-trained
isolated-word recognizer are due to phonemic hidden Markov models
(phoneme models) mapping to short segments of speech. When we
force these models to map to longer segments corresponding to the
observed minimum durations for the phonemes, then the likelihood of
the incorrect phoneme sequences drops dramatically. This drop in the
likelihood of the incorrect words results in significant reduction in the
acoustic recognition' error rate. Even in cases where acoustic
recognition performance is unchanged, the likelihood of the correct
word choice improves relative to the incorrect word choices, resulting
in significant reduction in recognition error rate with the language
model. On nine speakers, the error rate for acoustic recognition
reduces from 18-6 to 17-3%, while the error rate with the language
model reduces from 9-2 to 7-2%.

We have also improved the phoneme models by correcting the
segmentation of the phonemes in the training set. During training, the
boundaries between phonemes are not marked accurately. We use
energy to correct these boundaries. Application of an energy threshold
improves the segment boundaries between stops and sonorants
(vowels, liquids and glides), between fricatives and sonorants, between
affricates and sonorants and between breath noise and sonorants.
Training the phoneme models with these segmented phonemes results
in models which increase recognition accuracy significantly. On two
speakers, the error rate for acoustic recognition reduces from 26-5 to
23-1%, while the error rate with the language model reduces from 11-3
to 8-8%. This reduction in error rate is in addition to the error rate
reductions obtained by imposing minimum duration constraints. The
overall reduction in errors for these two speakers using minimum
durations and energy thresholds is from 27-3 to 23-1% for acoustic
recognition, and from 14-3 to 8:8% with the language model.

* Also with Bell-Northern Research, Montreal.
+ Currently at Center for Auditory & Speech Sciences, Gallaudet University, Washington, D.C., U.S.A.

' We use the term acoustic recognition error rate to mean the recognition error rate when every word in the
vocabulary is considered a priori equally likely.
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1. Introduction

The goal of our 86 000-word recognizer is to transcribe speech spoken as a sequence of
isolated words. For each spoken word, the recognizer uses acoustic information and
rough likelihoods in a fast search algorithm (Gupta, Lennig & Mermelstein, 1988) to
narrow the possible word hypotheses from the 86 000 words (Seitz et al., 1990) in the
total vocabulary to a small list. It then refines the list by computing an exact likelihood
score for each hypothesized word. The exact likelihood scores take into account acoustic
information but not the syntactic, semantic and pragmatic characteristics of English. To
take these into account, the exact likelihoods are further refined with the aid of a
statistical language model to generate the most likely sequence of words (Gupta, Lennig
& Mermelstein, 1992). In this paper our focus is on improving the accuracy of our
recognizer through improvements in the acoustic recognition algorithm.

Our strategy is to improve recognition accuracy by eliminating weaknesses inherent in
hidden Markov modelling algorithms for speech recognition. For instance, hidden
Markov models incorporate only weak duration constraints in the phonemes they
generate. During both the fast search algorithm and the exact likelihood scoring, the
phoneme” models are mapped to acoustic segments in order to compute the likelihood of
the acoustic data. When an incorrect phoneme sequence is mapped to the acoustic input,
we frequently observe that one or more models are often mapped to acoustic segments
shorter than the minimum possible duration for the phoneme. One such example can be
seen in Fig. 1. Here, the word spoken is veins, while the best choice produced by the
recognizer is brings. Notice that the model for /r/ is mapped to 20 ms of acoustic data,
while the duration minimum® for /r/ observed in the training data is 40 ms. We consider
mapping of phoneme models to acoustic segments shorter than those observed in the
training data as a weakness in hidden Markov modelling. This weakness has been
addressed by imposing minimum duration constraints on the phonemes in the HMM
framework. These minimum durations are derived from the training data. Imposing
duration minima on the phonemes results in significant reduction in the likelihoods of
incorrect word hypotheses, and increases both acoustic recognition accuracy and
recognition accuracy with the language model.

In previous work, Bush and Kopec (1987) apply minimum duration constraints on
speech segments to improve digit-string recognition accuracy. They find that a minimum
duration constraint of 50 ms for each acoustic segment is optimal for their digit-string
recognizer. Soong (1989) has used minimum durations to improve phoneme recognition
accuracy in spoken Japanese text. He assigns minimum allophone durations to 2084
allophonic HMMs to improve phoneme recognition accuracy. In our experiments with
allophone modeling (Deng et al., 1990), we have obtained best recognition accuracy
using 44 phonemic mixture HMMs (see Table I for details on the 44 models used). In this
paper we impose phoneme duration constraints during recognition using these 44
phoneme models. For the sonorants and affricates, one duration minimum per phoneme
is used everywhere, while for the remaining phonemes, the duration minimum depends
on whether the phoneme occurs in the initial, medial or final position.* The duration

>The models represent phonemes, except for /I/ and /r/, where we use two allophones (prevocalic and
syllabic/postvocalic). Despite the fact that /1/ and /r/ each have two models, we refer to each of the 44 models in
our system as a phoneme model.

* We refer to the minumum duration of a phoneme observed in the training set as its duration minimum.

*We use the terms initial, medial and final to mean word-initial, word-medial and word-final, respectively.
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Figure 1. An example of an HMM mapping to a short duration acoustic
segment. In this example, veins was misrecognized as brings. Notice that the
phoneme model for /r/ gets mapped to a 20 ms-long acoustic segment. The
minimum duration for /r/ we have observed in the training set is 40 ms.

minimum varies from 20 ms to 100 ms depending on the phoneme and the context in
which it appears.

Another weakness in hidden Markov modelling that we have addressed is the
erroneous segmentation of words into phonemes. Many segmentation errors in the
training data are between high energy and low energy phonemes. A number of these
segmentation problems have been corrected by constraining the energy contours to
prevent phonemes with high energy from mapping onto phonemes with lower energy.
Segment boundaries between stops and sonorants, between fricatives and sonorants,
between affricates and sonorants and between breath and sonorants are most amenable
to correction using energy constraints. Segment boundaries between vowels, liquids,
glides and nasals can be corrected by using duration minima. Correction of the segment
boundaries between phonemes in the training set leads to improved phoneme models,
resulting in higher acoustic recognition accuracy and higher recognition accuracy with
the language model.

Bush and Kopec (1987) and Kopec and Bush (1985) have also applied energy
constraints to improve isolated digit and digit-string recognition accuracy. The energy
constraints have been imposed on either the peak energy in the speech segment or on the
minimum energy in the speech segment. For example, imposing the constraint that the
peak energy in a stressed vowel segment be above a certain threshold reduces certain
digit insertion errors (Bush & Kopec, 1987). Forcing the minimum energy in voiceless
fricative segments to be below a certain threshold reduces voiceless fricative confusion
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TaBLE 1. Duration constraints in milliseconds for different phonemes

used in recognition. The first 44 phonemes listed correspond to phoneme

models used in recognition. Note that the phoneme models also include

models for initial and final breath. Initial sonorants can be optionally

preceded by initial breath, while the final sonorants can be optionally

followed by final breath. Phonemes in the last four rows have position-
dependent duration minima

Min. duration Min. duration

Allophone (ms) Allophone (ms)
/aj/ 100 Jaw/ 100
/aj/ 100 Ja/~[a/ 70
/i 60 il 40
e/ 70 e/ 40
&/ 60 Jar/ 100
A/ 60 o/ 50
Ju/ 70 o/ 70
Jor/ 80 /3] 20
/il 30 /w] 50
m 40 1 60
[r] 40 [r] 60
Initial breath 30 Final breath 30
/p/ 60 /b/ 40
t/ 40 /d/ 40
/k/ 70 /9/ 40
1/ 80 /d3/ 70
/f/ 70 v/ 40
10/ 70 /8/ 50
/s/ 90 /z/ 80
/S] 100 13/ 60
/m/ 40 /n/ 40
/n/ 70 /h/ 60
Initial [t b d g 8] 20

Initial [p £ 6 v] 40

Initial [k] 60

Final[pbtdk g f6vd] 20

with sonorants (Kopec & Bush, 1985). These constraints have been incorporated in their
recognition algorithm in order to improve recognition accuracy of their isolated digit
and digit-string recognizers.

Since our aim is to improve segment boundaries between phonemes during Viterbi
training, the energy constraints take a very different form than those used by Bush and
Kopec (1987). For example, to mark boundaries between vowels and fricatives accur-
ately, we impose the constraint that every frame in the vowel segment has energy above a
certain threshold. (Note that Bush and Kopec require only one of the frames in a
stressed vowel segment to have energy above a certain threshold.) Similarly, we require
every frame of a fricative to have energy below a certain threshold.

2. Exploiting phoneme durations to improve recognition accuracy

A detailed description of the recognition system is given in Gupta, Lennig and
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Mermelstein (1988). Here, we outline details pertinent to this paper only. The 44
allophonic mixture HMMs used in the recognizer are described in detail in Deng et al.
(1990). In this section we also outline weaknesses in hidden Markov modelling algor-
ithms used for recognition, and show how these weaknesses have been addressed by
imposing duration constraints in the recognition algorithm.

A block diagram of the recognition system is shown in Fig. 2. Recognition is
performed in four stages. The first stage determines the end-points of the words using C,
the log of a weighted spectral energy. The temporal sequence of feature vectors between
these two end-points is employed by the succeeding stages to recognize the unknown
word.

The second stage of recognition generates a number of hypotheses for the syllable
count (total number of syllables) in the unknown. Estimation of the syllable count
allows us to restrict our search to a subset of the vocabulary. For each syllable count
estimate K, we form a graph consisting of a concatenation of K distinct syllable
networks. Each arc of the graph corresponds to one of 44 phoneme models listed in
Table I. Every phoneme sequence in the lexicon corresponding to a K-syllable word has
a path through this graph. This graph is called the syllabic graph of count K.

The third stage of recognition is a syllabic graph search (or fast search algorithm)
which computes the sequence of most likely phoneme strings through the syllabic graph.
The syllabic graph search performs a fast search through all possible paths within the
syllabic graph using a variation of the stack algorithm (Jelinek, 1976), or the 4* algorithm
as it is termed in the artificial intelligence literature (Nilsson, 1980). The output of the
syllabic graph search is a list of the N most likely lexically valid phoneme strings and
their associated rough likelihoods.

Speech Parameter 15-dimensional parameter vector
input > estimation
Loudness .
. Static and dynamic
W vcodes v
List of
Word
End-point Syllable count Ly, Fast graph word Precise
detection estimation search likelihood
end-points algorithm hypotheses scoring
4 4
Syllable Syllable Phoneme Probabilistic
models network Lexical models word
free lattice
Acoustic recognizer
Language Linguistic
model decoding
Maximum
likelihood

text

Figure 2. Block diagram of the large vocabulary recognition system.
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The fourth stage of recognition computes the exact likelihood scores for the phoneme
strings which were generated by the syllabic graph search, and re-orders the phoneme
strings based on these scores. Finally, this word lattice, together with the associated
likelihoods, is input to a trigram language model (Gupta, Lennig & Mermelstein, 1992)
which outputs the most likely sentence.

Let us first outline one of the weaknesses observed in hidden Markov modelling. Many
incorrect words cannot be differentiated from the correct word on the basis of the exact
likelihoods. A number of incorrect words have high likelihoods due to phoneme models
matching well with acoustic segments shorter than the duration minimum for the
phoneme. Figure 1 shows an example of one such match. Notice that the model for [r] is
mapped to 20 ms of the phoneme /e/, while the duration minimum for [r] is 40 ms.

Forcing phoneme models to match to acoustic segments exceeding the duration
minima of the phonemes results in a dramatic drop in the likelihoods of many of these
incorrect word choices. Such drops in likelihoods of incorrect words result in significant
improvement in both the acoustic and language recognition accuracy. There are many
possible strategies for incorporating duration® constraints.

We have applied duration constraints by restricting the possible state sequences
through the phoneme model to correspond to the duration minimum for the phoneme.®
Consider how these duration constraints can be incorporated into the HMM frame-
work. We would like to find the most likely state sequence (through the phoneme models
corresponding to the given phoneme sequence) which generates the given acoustic input
and obeys the duration minima for the phonemes. To obtain such a state sequence, let us
look at all possible paths which end at state S; at time ¢ (see Fig. 3). In the Viterbi
formulation without duration constraints, we only keep the most likely state sequence to
state S, at time 7. To incorporate duration constraints, we also compute the duration in
frames of the current phoneme up to state S, at time ¢. This duration d; corresponds to
the total number of transitions taken through the current model in order to reach state S,
at time 7. To impose minimum duration constraints, we do not allow a transition from
state S, at time 7 to a state in the model for the next phoneme if the duration d, is less than
the minimum allowed duration.

If we keep only the best state sequence for each state S, at time ¢z, then the resulting
path (or state sequence) to the final state S, at time 7 will be suboptimal. Let us see how
many paths need to be kept at each point (S, 7) in order to determine the optimal state
sequence to the final state S, at time 7. Note that the multiple paths correspond to the
most likely state sequences to the point (S, ) with different durations in the current
model. At every point we keep only one path with duration greater than the minimum.
If a path with duration greater than the minimum exists, then the only additional paths
we keep are those with duration less than the minimum having likelihoods greater than
the minimum duration path. A path with duration less than the minimum is kept only if
there is no other higher likelihood path with a longer duration. The maximum number of
paths that may have to be kept at any point cannot be greater than the minimum
duration of the phoneme in frames. This happens only when the likelihood of the paths
reduces monotonically with increasing duration.

*The models already contain weak duration constraints through state transition probabilities. These
duration constraints do not penalize short durations adequately.

¢ These phoneme models are left-to-right Gaussian mixture HMMs with self-loop, next state and skip
transitions (Deng et al., 1990).
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Figure 3. Trellis for Viterbi search showing how duration is incorporated in the
search.

The implementation of duration constraints in the fast search algorithm is quite
similar. In the fast search algorithm we generate a list of phoneme sequence hypotheses.
These hypotheses are generated by finding the most likely phoneme sequences through a
syllabic network, where each branch of the network corresponds to a phoneme model
(Gupta, Lennig & Mermelstein, 1988). To find the most likely phoneme sequence
through this syllabic network we estimate the likelihood of each branch in this network.
The likelihood of a branch corresponds to the likelihood of all possible paths through
this branch in the network. We apply minimum duration constraints during estimation
of this likelihood by forcing the model corresponding to this branch to map to an
acoustic segment longer than the specified duration minimum for the phoneme.

3. Experimental results using duration constraints

Before describing estimation of minimum phoneme durations we outline the experimen-
tal set-up. We have recorded speech from a total of nine native English speakers. Each
speaker read betweeen 2000 and 3000 words, pausing at least 150 ms between words. The
words correspond to paragraphs selected arbitrarily from magazines, books and
newspaper articles. Each speaker took between two and five sessions to record the entire
script. A part of the text was used for training the phoneme models, while the remaining
text was used for estimating the recognition accuracy of the algorithm. No attempt was
made to separate the training and test data according to recording sessions. Two of the
nine speakers are co-authors of this paper (speakers ML and FS).

In deriving the duration minimum we have looked at the durations of phonemes in
the training set for two speakers with fast speaking rate (among the nine speakers). To
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derive duration minima for phonemes we observe a few tokens of each phoneme in
contexts where they are expected to be short. The entire training set need not be
manually segmented. We require manual segmentation since the Viterbi segmentation
does not provide correct values for the duration minima. The duration minima derived
from two speakers have been used for all nine speakers.

We have derived one duration minimum per phoneme, except for stops and fricatives,
whose duration minimum depends on position. For each stop and fricative we use three
possible duration minima corresponding to the phoneme occurring in initial, medial or
final position. Stops in initial position can be shorter, since the silent stop gap or voice
bar may not be present. Similarly, final stops may be unreleased or very weakly released,
in which case the end-point detector may not classify the stop burst as part of the word.
Also, initial and final weak fricatives /05fv/ can be shorter. Therefore, we have reduced
the minimum durations for initial and final weak fricatives as shown in Table I. The
phoneme durations observed are generally longer than what would be expected in
continuous speech. The minimum durations thus derived are used for all speakers.

Recognition results with and without duration constraints are compared for nine
speakers in Table II. The duration constraints reduce the number of search errors in the
fast search algorithm. A search error occurs when the correct word is absent from the list
of possible word hypotheses. The number of search errors is reduced from 210 to 121
(3-1 to 1-8%). Application of duration constraints in the exact likelihood scoring stage
results in a reduction of acoustic recognition error rate from 18-6 to 17-3%. However,
the major effect of the duration constraints is evident after applying the language model.
There, the duration constraints result in a reduction of 22% in word errors (from 9-2 to
7-2%). The reason for the reduced error rate is the relative lowering of the likelihoods of
incorrect words as compared to the correct word. This is evident from Table III, which
shows the average values of [log likelihood (correct word)—log likelihood (incorrect
word)] with and without duration constraints.

In conclusion, forcing phoneme models to map to longer segments results in
significant reduction in the likelihoods of incorrect segments. Such reductions lead to
reduced search errors in the fast search algorithm, improved acoustic recognition and
significant increase in word recognition accuracy after the language model. Duration
minima derived from a few speakers with a fast speaking rate are effective on other
speakers also. Even though we cannot claim these duration minima to apply to all
possible speakers, we expect them to be applicable to a majority of speakers.

One question we have not answered is whether we can use more precise duration
information instead of the duration minima to improve recognition accuracy further. In
this case we would require reliable statistics of phoneme durations in various contexts.
To collect statistics for phoneme durations we need a large amount of training data
manually segmented into phonemes. At present, we do not have such a database. Also,
such statistics may be speaker-dependent, requiring a large amount of manually
segmented training data for each speaker.

4. Use of an energy measure to improve training of phoneme models

The phoneme models can be trained by a forward—backward algorithm or by a Viterbi
algorithm (Levinson, Rabiner & Sondhi, 1983). In the context of our large vocabulary
recognizer, the two training algorithms result in identical recognition accuracy. With
Viterbi training, the implied segmentations can be evaluated to see how effectively the
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TaBLE I1. Recognition results for nine speakers with and without duration constraints

Acoustic recognition
Errors after

Search errors Recog. errors lang. model
Total words
Speaker No dur.  Dur. No dur.  Dur. No dur. Dur.
(sex) Test  Training (%) (%) (%) (%) (%) (%)
DS (m) 451 1900 49 31 24-0 21-9 14-4 10-4
AM (m) 565 2742 36 1-8 306 310 14-2 12-2
ML (m) 596 2000 17 142 14-5 12:6 67 54
IM (m) 587 1664 3:0 30 239 227 82 7-8
FS (m) 1014 2322 1-7 1:3 84 7-5 5-0 37
NM (f) 967 1299 4-0 1-7 19-4 150 11-0 60
CM (f) 1090 2343 35 21 169 16-5 89 7-8
MM (f) 586 2338 2:2 14 14-3 14-3 5:0 36
LM (f) 863 2353 3-8 147 237 22-6 12-1 9-8
Average 6719 2107 31 1-8 18-6 17-3 9-2 72

phoneme models segment words into phonemes. We have observed many phoneme
segmentation errors in the training data, and we consider this a weakness in hidden
Markov modelling. By correcting the segment boundaries between phonemes in the
training set we can improve the phoneme models and enhance the accuracy of the
recognizer. Both duration and energy constraints are helpful in correcting such
segmentation errors.

In the training data many segmentation errors are between low energy and high
energy phonemes. For example, we have observed incorrect segment boundaries
between stops and sonorants, between fricatives and sonorants, between affricates and
sonorants and between breath noise and sonorants. (Note that stops, fricatives,
affricates and breath have low energy, while sonorants have high energy.) Segment
boundaries between low energy and high energy phonemes can be located accurately by
forcing a more precise alignment of energy contours. One example of incorrect segment
boundaries can be seen in the top spectrogram of Fig. 4 which shows Viterbi
segmentation without any duration or energy constraints. In this example, the boundar-
ies between /h/ and /1/, and between /1/ and /z/ in his are not right. In this instance, we can
use the frame energy (C,) to correct the segmentation errors. The segment boundaries

TaBLE III. Comparison of average values of [log likelihood (correct
word)—log likelihood (top choice incorrect word)] before and after
duration constraints

Log likelihood (correct) —log likelihood (incorrect)

Speaker No duration constraints Duration constraints
LM 146 18-0
ML 20-1 29-8

NM 20-5 31:2
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Figure 4. Example of improved segmentation in the training set using duration
and energy constraints. In this example, the word spoken is his. The top
spectrogram shows segmentation into phonemes without energy constraints.
Notice that part of /h/ is mapped into /1/, while a part of /1/ is mapped into /z/.
Bottom spectrogram shows segment boundaries after energy and duration
constraints. Notice that the above segmentation errors have been corrected.
The bottom spectrogram also shows the energy contour.

after consideration of energy thresholds are shown in the bottom spectrogram of Fig. 4.
The energy contour is superimposed on the spectrogram. The energy increases rapidly
from /h/ to /1/, and it drops rapidly during the transition from /1/ to /z/.

Because sonorants have similar energy contours we cannot use energy to correct
segment boundaries between sonorants. However, we can use minimum duration
constraints to correct segment boundaries between sonorants. In other words, the energy
and duration constraints are complementary. The duration constraints are imposed in
the same way as in recognition as outlined in Section 2. An example of duration
constraints in training can be seen in Fig. 5, where we are able to refine the segment
boundary between /¢/ and [l]. The top spectrogram shows the phoneme boundaries when
no duration constraints are imposed, while the bottom spectrogram shows phoneme
boundaries after duration constraints are imposed. Note that the start of the /g/ has
moved by one frame to satisfy the energy constraints, while the end has moved more
than 40 ms from the start of /e/ segment. This is because the optimal path with duration
for /e/ of 40 ms or more results in duration of /¢/ to be 80 ms. In Fig. 6, also, the segment
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Figure 5. Example of improved segmentation in the training set using duration
and energy constraints. The word spoken is fell. In this instance, the durations
play a major role in correcting the segment boundary between /¢/ and [1].
Notice that, after duration constraints are applied, the resulting duration of /g/
is actually longer than the allowed minimum.

boundary between /¢/ and [r] has been improved by imposing duration constraints.
Here, also, before imposing duration constraints, /¢/ has a duration less than the
minimum (top spectrogram in Fig. 6). However, after application of duration con-
straints, the duration for /¢/ is much longer than the minimum.

We have observed that the C, thresholds required to achieve the best segment
boundaries are speaker-dependent. The thresholds are optimized iteratively from the
training data by using a set of initial threshold assignments, looking at the resulting
segmentation,’ and then selecting new threshold values to improve the segmentation. At
this point, we are not looking at automating the process for optimizing the thresholds.
This is a pilot study to see if imposing reasonable energy constraints would improve
recognition accuracy. The thresholds used for speakers DS and AM are compared in
Table IV.

Let us discuss some of the thresholds given in Table IV in more detail. In all vowels
(except /1/ and /a/), the lowest energy in any frame inside a vowel can drop as low as

”We only look at words whose likelihoods have dropped significantly.
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Figure 6. Example of improved segmentation in the training set using duration
and energy constraints. The word spoken is paragraph. This is an example
where the vocal fry in the last syllable /gref/ reduces the effectiveness of energy
constraints. Only duration constraints are effective in improving the segment
boundaries.

15 dB below the peak energy, where the peak energy in the word is that of the frame with
the highest energy. The lowest energy in /1/ and /a/ can be as low as 20 dB below the peak
energy for speaker DS, and as low as 25 dB below the peak energy for speaker AM. Note
that, as the threshold constraints get weaker, the effectiveness of thresholds to correct
segmentation errors is reduced. In fact, the energy threshold is only marginally effective
in correcting segmentation errors between the final vowel and a non-sonorant phoneme
for speaker AM. This is primarily due to the strong vocal fry observed in the final
syllable for this speaker. One example of the vocal fry can be seen in the syllable /gref/ of
paragraph as shown in Fig. 6. Due to the vocal fry, the energy levels in the last vowel can
drop as low as 35 dB below the peak energy level. Also, as is evident from Table IV, the
energy constraints are only marginally effective in placing a segment boundary between
a flap® and a sonorant segment.

The energy thresholds are applied during Viterbi segmentation of words into
phonemes in the training set. Application of energy thresholds is very similar to the

$ Any /td/ occurring in intervocalic position where the following vowel is unstressed.
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TaBLE IV. C, constraints for phonemes for speakers DS and AM. Note
that all the constraints are relative to the peak energy in the word

Energy minima

Min. relative Min. relative

to peak (DS) to peak (AM)
Phonemes (dB) (dB)
J/ajawojaoieg®ArAuo o =15 —15
or/
13/ —-20 —-25
Final vowel —15 —-35
jwlr/ -30 —35

Energy maxima

Max. relative Max. relative

to peak (DS) to peak (AM)
Phonemes (dB) (dB)
/nm p/ 0 0
Initial and final breath =15 —15
t-flats and d-flaps —i1 =
Initial and medial stops, —5 —5
fricatives and affricates
Final stops, fricatives and —-10 —10

affricates (threshold at the

beginning of the phoneme)

Final stops, fricatives and 5 -5
affricates (threshold

everywhere except the

beginning)

application of duration constraints as explained in Section 2. In applying energy
constraints, a transition in the phoneme model can only be taken if the C, value for the
observed frame is within the specified constraints for the corresponding phoneme model.
Such a restriction gives us Viterbi segmentation of the word into phonemes with the
specified constraints on C, (see Table IV for C, constraints). The new phoneme models
are trained using this segmented training data.

We have applied energy thresholds during training only on two speakers (DS and
AM). Recognition results for the two speakers using the new phoneme models are shown
in Table V. The recognition accuracy for both the speakers has improved significantly.
The acoustic recognition errors have been reduced by 13%, while the recognition errors
after the language model have been reduced by 23%. For the speakers DS and AM, the
combined effect of duration constraints in recognition, and duration and energy
constraints in training is a 16% reduction in acoustic recognition errors and a 39%
reduction in errors after the language model.

5. Conclusions

We have used minimum duration constraints and energy thresholds for phonemes to
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TABLE V. Recognition results for two speakers with and without energy
(C,) and duration constraints during training. During recognition,
duration constraints are used

Acoustic recog.
Errors after

Search errors Recog. errors lang. model

No C, C; No C, C, No G, C,

Speaker (%) (o) (") (") (") (%)
DS 31 30 219 18-8 10-4 7-5
AM 1-8 22 310 27-3 12:2 10-0
Avg 2:5 2:6 26-5 23-1 11-3 88

increase the recognition accuracy of our large vocabulary recognizer. Minimum
duration constraints force the phoneme models to map to acoustic segments longer than
the duration minima for the phonemes. Such minimum duration constraints result in
significant lowering of likelihoods of many incorrect word choices, improving the
accuracy of both acoustic recognition and recognition with the language model. The
number of word recognition errors with the language model is reduced from 620 to 481
(9-2 to 72%). The minimum phoneme duration constraints applied are the same across
all nine speakers tested.

Energy thresholds improve segment boundaries between phonemes in the training set.
Training the phoneme models with improved segmentation for phonemes results in
increased acoustic recognition accuracy and in enhanced recognition accuracy after the
language model. Not all segment boundaries between phonemes can be improved by
using energy thresholds. Only the segment boundaries between stops and vocalic
segments, between fricatives and vocalic segments, between affricates and vocalic
segments and between breath and vocalic segments can be improved. Also, the energy
thresholds used are speaker-dependent and cannot be applied blindly across all speakers.
Vocal fry significantly reduces the effectiveness of the energy thresholds. The energy
thresholds are tighter for the speaker with very little vocal fry than for the speaker
exhibiting a lot of vocal fry. The combined effect of minimum duration constraints in
recognition and minimum duration and energy constraints in training is to reduce the
word error rate by 40% (from 14-3 to 8:8%) with the language model. To achieve
speaker-independent thresholds, one would have to examine additional data from
numerous speakers.
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