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Abstract—In this study we demonstrate the effectiveness of phonemic
hidden Markov models with Gaussian mixture output densities (mix-
ture HMM?’s) for speaker-dependent large-vocabulary word recogni-
tion. Speech recognition experiments show that for almost any reason-
able amount of training data, recognizers using mixture HMM’s
consistently outperform those employing unimodal Gaussian HMM’s.
With a sufficiently large training set (e.g., more then 2500 words), use
of HMM’s with 25-component mixture distributions typically reduces
recognition errors by about 40%. We also found that the mixture
HMM'’s outperform a set of unimodal generalized triphone models
having the same number of parameters. Previous attempts to employ
mixture HMM’s for speech recognition proved discouraging because
of the high complexity and computational cost in implementing the
Baum-Welch training algorithm. We show how mixture HMM’s can
be implemented very simply in the unimodal transition-based frame-
works by the device of allowing multiple transitions from one state to
another.

I. INTRODUCTION

For HMM-based large vocabulary speech recognition, use of
phonemes as the basic unit of speech is attractive for several sig-
nificant reasons. First and foremost, since there are only about 40
phonemes in English, phonemic HMM’s can be trained adequately
with practically feasible amounts of speech data. Second, phonem-
ically based recognizers enable the user to add new words to the
recognition vocabulary with great convenience. Third, the pho-
nemic HMM approach allows the recognizer to focus on those re-
gions of speech which are inherently confusable. This avoids po-
tential masking of discrimination by random variation in the
phonemically common portion of the words [1]. Finally, use of
phonemic HMM'’s facilitates dévelopment of “heuristically based
fast search algorithms to reduce the computational requirements in
decoding the spoken words [2].

We have evaluated the performance of an 86 000-word speaker
dependent isolated word recognizer where each phoneme is repre-
sented by one HMM with unimodal Gaussian output densities. De-
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spite the above advantages, the recoghition rate achievable by our
system was seriously limited no matter how much training data was
used. The major problem considered responsible for the poor per-
formance is the excessively high variability in acoustic realization
of a phoneme attributable principally to the phonetic contexts in
which it occurs. Much higher variances are observable in the
Gaussian distribution associated with the HMM states near the
phoneme boundaries than with those near the center [3].

A stochastic model for a phoneme must be sufficiently flexible
to capture the great variability in its acoustic realization. If a pho-
neme is always encountered in the same context, it can be argued
that a unimodal Gaussian HMM provides an adequate description.
To allow for contextual variation; a more general model appears
desirable. One way of accommodating the highly variable phoneme
is to relax the unimodal assumption for the HMM output densities.
In this correspondence, we repoftt our experiments with phonemic
HMM'’s having Gaussian mixture output densities (abbreviated as
mixture HMM’s hereafter); for previous applications of mixture
HMM’s to speech recognition sée [4]-[7]. While phonemes rep-
resented by mixture HMM’s are still assumed independent of their
phonetic contexts, the multimodal output densities in mixture
HMM’s can be expected to provide a more complete representation
of the observed acoustic parameter variation in the HMM state than
those in unimodal Gaussian HMM’s. In this correspondence, we
address the problem of how to make efficient use of free parameters
in HMM-based speech recognition, and provide experimental eval-
uation of the mixture HMM’s in an 86 000-word recognizer.

II. MixTuRE HMM’s

The HMM we use to représeht a phoneme is based on an under-
lying left-to-right Markov chain having 4 to 10 states. The param-
eters that characterize the HMM are as follows:

1) A=la;l,i,j=1,2, -, N, the state transition matrix of
the Markov chain, where g;; is the transition probability from state
i to state j and N is the number of states. For the left-to-right HMM
we have used, we assume a; = 0, forj < iandj > i + 2.

2) A probability density on the observation vectors which is de-
fined for each transition in the Markov chain. For each transition,
the output distribution is a Gaussian mixture having a density of
the form

M
b(0) = X c"g("(0) (M

where O is the observation vector, cf»jf") is the weight for the mth
mixture component associated with a transition from state i to state
j- &§"(0) = N[O, ©§", L] is a Gaussian density for the mth mix-
ture component associated with a transition from state i to j. In
i"(0), the mean vector @} is distinct for each state transition
and for each mixture component. The covariance matrix I, specific
to each phonemie, is assumed to be common to all mixture com-
ponents and to all state transitions, in order to save computation
and to make its estimate more reliable.
The training algorithm for mixture HMM’s can be found in [8].
" However, we found it more convenient to adopt a slightly different
formulation of the model which enables us to train it by means of
the well-known unimodal Gaussian training algorithm, with minor
modifications to existing software. The idea is that for each mixture
HMM, it is possible to construct an equivalent unimodal HMM by
allowing multiple parallel transitions between pairs of states, as in
Fig. 1. Associated with each transition in the mixture HMM there
is a transition probability p, and, foreachm =1, - - -, M, a mix-

ture weight c,‘-;") and a Gaussian density; in the equivalent unimodal
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mixture distribution

(a)
unimodal distribution

(b)

Fig. 1. (a) State diagram of a mixture HMM. The distribution associated
with each transition is a mixture of M Gaussian distributions. (b) State
diagram of an equivalent multiple-branch HMM. Each transition in (a) is
replaced by M parallel branches. The distribution associated with each
branch is unimodal Gaussian.

model, this transition is replaced by a set of M parallel branches
whose transition probabilities are pc{” and whose output distribu-
tions are the corresponding mixture components. We will refer to

this unimodal as a multiple-branch HMM.

III. SPEECH RECOGNITION EXPERIMENTS

This section describes a series of experiments to evaluate the
effectiveness of the phonemic mixture HMM’s discussed in the
previous sections. The task is speaker-dependent isolated-word
reeognition on an 86 000-word English vocabulary.

Traihing and test data from nine speakers, four males and five
females, were recorded in a quiet sound booth using a Crown PZM
microphone, low-pass filtered at 7.1 kHz and sampled at the rate
of 16 kHz. A Hamming window with a width of 25.6 ms is applied
at intervals of 10 ms; each frame is represented by a 15-dimensional
vector consisting of mel-frequency cepstral coefficients and their
differences over time [2]. The data consists of natural language
sentences spoken as sequences of isolated words, selected ran-
domly from magazines, books, office correspondence and news-
papers. The number of words spoken by each speaker varied from
about 2000 to 5000. The partition of these words into training and
test sets will be indicated in describing the experiments.

The structure of our large-vocabulary isolated-word recognizer
has been described previously [2], [9], [10]. Briefly, the recogni-
tion process consists of word-endpoint detection, a fast search al-
gorithm to generate a list of most likely word choices (300 choices
on average), the computation of exact likelihoods for these choices,
and the use of a uniform language model or a trigram language
model trained on 57-million words of text.

A. Recognition Results with 25-Component Mixture HMM s

A list of éxperimental results from nine speakers is presented in
Table I. For each speaker, the number of words used in training
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TABLE 1
RECOGNITION RESULTS USING 25-COMPONENT MIXTURE HMM’s FOR NINE
SPEAKERS
Performance
Training Test
Speaker Size Size Fast Uniform Trigram
(sex) (Words) (Words) Search Language Language
AMM) 2742 565 96.4% 69.5% 86.2%
CA(F) 2343 1090 96.5% 83.1% 91.1%
FS(M) 2322 1014 98.3% 91.6% 95.4%
IM(M) 1664 587 97.0% 75.4% 92.8%
LM(F) 2353 863 96.2% 76.3% 88.6%
MA(F) 1600 586 97.8% 85.7% 95.1%
MG(F) 2338 564 97.7% 86.3% 93.6%
ML(M) 2066 580 98.3% 85.5% 93.8%
NM(F) 1299 967 96.0% 81.6% 90.0%
TABLE II

COMPARISON OF RECOGNITION RATES FOR UNIMODAL PHONEMIC HMM’s, UNIMODAL TRIPHONE HMM’’s,
AND 25-COMPONENT MIXTURE PHONEMIC HMM’s. UNIFORM AND TRIGRAM LANGUAGE MODELS

Unimodal HMM’s

Mixture HMM's

Triphone HMM's

Speaker (test Training
size) Size Uniform Trigram Uniform Trigram Uniform Trigram
CA(female) 717 67.9% 80.6% 69.7% 80.5% 69.7% 82.5%
(1090 words) 1532 70.2% 85.0% 81.0% 90.0% 78.1% 88.0%
2347 70.6% 86.6% 86.1% 94.2% 80.8% 90.4 %
3098 70.8% 86.8% 86.0% 94.0% 82.7% 91.3%
3880 70.7% 86.7% 85.9% 94.0% 83.0% 91.9%
AM(male) 1100 54.4% 78.0% 55.4% 79.0% 53.4% 77.0%
(698 words) 2039 68.2% 81.0% 73.9% 87.0% 72.0% 83.0%
2742 68.7% 81.9% 76.7% 89.7% 76.1% 86.4%
MA (female) 1600 79.0% 90.4% 86.2% 92.5% 83.3% 89.6%
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(586 words)

and test sets, and the recognition accuracy achieved at various
stages of the mixture-HMM recognizer are shown in the table as
separate columns. The test data comprises 6816 words in total.

Shown in the fourth column is the performance of the fast search
strategy based on the syllabic graph search algorithm which has
been described elsewhere [2]. The performance is measured by the
percentage of test words which are selected as one of 300 candidate
words from among 86 000 words in the vocabulary. On average
over the nine speakers (weighted by the size of the test sets), the
proportion of words missed by the fast search algorithm is 3.0%.
This result, obtained by the use of mixture HMM’s in the syllabic
graph, is significantly better than that by the use of unimodal
Gaussian HMM'’s. '

Shown in theé fifth and sixth columns are the recognition accuracy
with the use of the uniform and the trigram language model, re-
spectively. The accuracy is measured by the percentage of test
words correctly identified by the recognizer as the top word choice.
Homophone confusions are counted as errors when the trigram lan-
guage model is used, but not when the uniform language model is
used. The weighted average of the recognition rates for the uniform
and trigram language models are 82.2% and 91.8%, respectively.

B. Comparison of Recognition Rates Obtained with Unimodal
Phonemic HMM s, Mixture Phonemic HMM s, and Unimodal
Generalized Triphone HMM s for Various Training Set Sizes

Our work on mixture HMM’s grew out of earlier work on gen-
eralized triphone modeling which has been described elsewhere

[11]. We defined 25 generalized triphones for each phoneme based
on a five-way classification of left and right phonetic contexts and

- trained unimodal Gaussian HMM s for each triphone. We then used

the mean vectors from these models as an initialization for training
mixture HMM’s (one per phoneme). The two sets of HMM’s thus
have the same number of parameters. It came as something of a
surprise to discover that the mixture HMM’s outperformed the tri-
phone HMM'’s in almost every instance both with the uniform and
trigram language models, as indicated in Table II (columns 5-8).

Columns 3 and 4 contain recognition rates for unimodal pho-
nemic HMM’s. Except for the experiment performed on speaker
CA with 717 words of training data, the performance of mixture
models is substantially better. Note that for both unimodal and
mixture models performance improves as the amount of training
data increases but that the improvement saturates much earlier for
the unimodal models. Although the number of parameters in the
mixture HMM’s is much larger than in the unimodal HMM’s we
have not seen any evidence of under-training problems in the mix-
ture case. (Recall that we are tying the covariance matrix across all
mixture components on all transitions in each of the phoneme
models so that all of the extra parameters in the mixture HMM’s
are accounted for by the mean vectors.)

C. Effects of Different Initializations in Training Mixture HMM's

The parameter of HMM’s trained by the Baum-Welch algorithm
depend on the initialization used. In the case of mixture HMM’s
there is good reason to be concerned that recognition performance
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TABLE 111
COMPARISON OF LOG LIKELIHOODS ON TRAINING DATA (AT CONVERGENCE
AFTER FIVE ITERATIONS) AND OF RECOGNITION ACCURACY USING MIXTURE
HMM’s TRAINED FROM DIFFERENT INITIAL POINTS. UNIFORM LANGUAGE

MoDEL
Log Likelihood Percent
Initialization Method on Training Data Correct
Context-dependent HMM’s —1753296 76.3%
Mixture HMM’s from
another speaker — 1769875 76.7%
Partition tokens —1759080 76.0%

may be adversely affected by an inappropriate initialization. For
instance, if the parameters of two mixture components are set equal
at initialization, they will remain equal on all subsequent iterations,
effectively reducing the number of mixture components by one.

We have experimented with three different ways of initializing
the 25-component mixture HMM’s. The first method is to use the
mean vectors of the triphone models referred to in the previous
section as initial estimates of the modes of the mixture distribu-
tions. In the second method we simply use mixture HMM’s trained
from another speaker. In the third method, frames of the training
data are aligned with mixture components in two steps and the es-
timates of the mean vector of each of the mixture components is
obtained by averaging all the frames aligned with it. First, the
frames in each token are aligned with transitions in a set of uni-
modal Gaussian HMM’s and we impose the same alignment with
the transitions in the set of mixture models to be initialized. Sec-
ond, frames are assigned to the mixture components associated with
the transitions by randomly associating a number between 1 and 25
with each token.

Likelihoods on training data and the corresponding recognition
rates with the uniform language model using the mixture HMM’s
obtained by the three different initializations are compared in Table
III for a male speaker (AM). The training and test sizes are 2742
and 698 words, respectively. For the second method of initializa-
tion, the prototype mixture HMM’s are from a female speaker
(CA), trained with 3880 words. The results shown in Table III
suggest that there is not much difference in the HMM’s obtained
by the three methods. In fact the recognition errors in each of the
three cases turned out to be much the same.

D. Effects of Varying the Number of Mixture Components

Table IV shows the result of a series of recognition experiments
carried out to determine the effect of varying the number of mixture
components when the size of the training set is fixed.

The experiments were carried out for one male speaker (AM)
with a training set of 2742 words and a test set of 698 words and
for one female speaker (CA) with training and test sets of 2342 and
1090 words, respectively. The recognition rates quoted were ob-
tained using the uniform language model.

Observe that increasing the number of components from 25 to
38 leads to no improvement in the case of either speaker. It may
be that an improvement could be obtained with more data; another
possibility is that with 25 components per mixture we may have
already exhausted the possibilities of phonemic mixture HMM’s.

IV. ConcLusiON

In this correspondence we have shown how mixture HMM’s can
be implemented very simply in the unimodal transition-based
framework by the device of allowing multiple parallel transitions
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TABLE 1V
EFFECTS OF DIFFERENT NUMBERS OF MIXTURE COMPONENTS ON
RECOGNITION PERFORMANCE. UNIFORM LANGUAGE MODEL

Number of Mixture Percent Correct Percent Correct

Components (Speaker AM) (Speaker CA)
1 68.7% 70.6%
5 73.2% 79.4%
25 76.6% 86.1%
38 75.0% 86.0%

between pairs of states. With this formulation, mixture HMM’s can
be trained by a direct application of the Baum-Welch algorithm for
unimodal Gaussian HMM’s. The mixture HMM’s described in this
correspondence are formally different from the tied mixture HMM’s
developed recently [12] in that the unimodal multivariate Gaussian
densities in our models are distinct not only for each mixture com-
ponent but also for each state transition (see (1)).

When evaluated in an 86 000-word recognizer with a trigram
language model, we found that 25-component mixture phonemic
HMM’s significantly outperform unimodal phonemic HMM’s,
leading to a reduction of more than 40% in the error rate when the
training set is larger than about 2500 words. We also found that
under the same conditions, 25-component mixture models gave
significantly better results than a set of triphone HMM’s consisting
of 25 unimodal models per phoneme. The is rather surprising since
it seems to suggest that our recognizer performs better without in-
formation concerning phonetic context. Perhaps a more reasonable
explanation is that context-dependent allophone models would per-
form better if they too were modeled using mixture HMM’s. Un-
fortunately, it is difficult to see how this can be done in practice as
there are more than 17 000 triphones in our dictionary and schemes
for tying triphone models based on prior phonetic knowledge are
unsatisfactory. Our results suggest that in training very large vo-
cabulary speech recognizers with moderate amounts of data (2000
to 3000 words), the free parameters are better used to construct
large mixture models for phonemes rather than attempting to ex-
plicitly model context dependence.
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